二、平面圖形
1、長方形 (1)特征 對邊相等,4個角都是直角的四邊形。有兩條對稱軸。 (2)計算公式 c=2(a+b) s=ab 2、正方形 (1)特征: 四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。 (2)計算公式 c=4a s=a2 3、三角形 (1)特征 由三條線段圍成的圖形。內角和是180度。三角形具有穩定性。三角形有三條高。 (2)計算公式 s=ah/2 (3) 分類 按角分 銳角三角形 :三個角都是銳角。 直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。 鈍角三角形:有一個角是鈍角。 按邊分 不等邊三角形:三條邊長度不相等。 等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。 等邊三角形:三條邊長度都相等;三個內角都是60度;有三條對稱軸。 4、平行四邊形 (1) 特征 兩組對邊分別平行的四邊形。 相對的邊平行且相等。對角相等,相鄰的兩個角的度數之和為180度。平行四邊形容易變形。 (2) 計算公式 s=ah 5、梯形 (1)特征 只有一組對邊平行的四邊形。 中位線等于上下底和的一半。 等腰梯形有一條對稱軸。 (2) 公式 s=(a+b)h/2=mh 6、圓 (1) 圓的認識 平面上的一種曲線圖形。 圓中心的一點叫做圓心。一般用字母o表示。 半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。 在同一個圓里,有無數條半徑,每條半徑的長度都相等。 通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。 同一個圓里有無數條直徑,所有的直徑都相等。 同一個圓里,直徑等于兩個半徑的長度,即d=2r。 圓的大小由半徑決定。 圓有無數條對稱軸。 (2)圓的畫法 把圓規的兩腳分開,定好兩腳間的距離(即半徑); 把有針尖的一只腳固定在一點(即圓心)上; 把裝有鉛筆尖的一只腳旋轉一周,就畫出一個圓。 (3) 圓的周長 圍成圓的曲線的長叫做圓的周長。 把圓的周長和直徑的比值叫做圓周率。用字母∏表示。 (4) 圓的面積 圓所占平面的大小叫做圓的面積。 (5)計算公式 d=2r r=d/2 c=∏d c=2∏r s=∏r2 7、扇形 (1) 扇形的認識 一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。 圓上AB兩點之間的部分叫做弧,讀作“弧AB”。 頂點在圓心的角叫做圓心角。 在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關。 扇形有一條對稱軸。 (2) 計算公式 s=n∏r2/360 8、環形 (1) 特征 由兩個半徑不相等的同心圓相減而成,有無數條對稱軸。 (2) 計算公式 s=∏(R2-r2) 9、軸對稱圖形 (1) 特征 如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。 正方形有4條對稱軸, 長方形有2條對稱軸。 等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。 等腰梯形有一條對稱軸,圓有無數條對稱軸。 菱形有4條對稱軸,扇形有一條對稱軸。 |
|
來自: youlewenxin > 《我的圖書館》