一、數學思想方法在解題中有不可忽視的作用 解題的學習過程通常的程序是:閱讀數學知識,理解概念;在對例題和老師的講解進行反思,思考例題的方法、技巧和解題的規范過程;然后做數學練習題。 基本題要練程序和速度;典型題嘗試一題多解開發數學思維;最后要及時總結反思改錯,交流學習好的解法和技巧。著名的數學教育家波利亞說“如果沒有反思,就錯過了解題的的一次重要而有意義的方面。” 教師在教學設計中要讓解學生好數學問題,就要對數學思想方法有清楚的認識,才能更好的挖掘題目的功能,引導學生發現總結題目的解法和技巧,提高解題能力。 1. 函數與方程的思想 函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。 2. 數形結合的思想 數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特征用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。 3. 分類討論的思想 分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。 解決分類討論問題的關鍵是化整為零,在局部討論降低難度。 常見的類型: 類型 1 :由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論; 類型 2 :由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題; 類型 3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論; 類型 4 :由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。 類型 5 :由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。 [查看原帖參與討論]
|