沖天爐熔煉鑄鐵時,熔融的鑄鐵以液滴通過灼熱的底焦,增碳效果很好,通常可以通過調整底焦高度、爐料配比和鐵液溫度來控制增碳量,有必要使用增碳劑的情況很少。 感應電爐熔煉鑄鐵時,爐內沒有碳源,爐料中生鐵錠的用量少,廢鋼的用量多,增碳劑一般是必不可少的。增碳劑的品種及其特征,不僅影響增碳效率,對鑄件的冶金質量也有重要的影響。 1.增碳劑 可以用作鑄鐵增碳劑的材料很多,常用的有人造石墨、煅燒石油焦、天然石墨、焦炭和無煙煤,以及用這類材料組配成的混合料。 (1)人造石墨 上述各種增碳劑中,品質最好的是人造石墨(也有人稱之為晶態石墨)。爐料中配加人造石墨,其作用不僅在于增碳,而且還有預處理鐵液的效果。 制造人造石墨的主要原料是粉狀的優質煅燒石油焦,在其中加瀝青作為粘結劑,再加入少量其他輔料。各種原材料配合好后,將其壓制成形,然后在2500~3000℃下的非氧化性氣氛中處理,使之石墨化。經高溫處理后,灰分、硫、氣體含量都大幅度減少。 由于人造石墨制品的價格高,鑄造廠常用的人造石墨增碳劑大都是制造石墨電極或其他成形部件時的切屑、廢舊電極和石墨塊等循環利用的材料,以降低生產成本。 熔煉冶金質量較高的球墨鑄鐵時,增碳劑宜首選人造石墨,為此最好向附近用電弧爐煉鋼的企業或電解鋁生產企業購買廢電極,自行破碎到要求的粒度。 (2)石油焦 這是目前廣泛應用的增碳劑。 石油焦是精煉原油得到的副產品。原油經常壓蒸餾或減壓蒸餾得到的渣油及石油瀝青,都可以作為制造石油焦的原料,再經焦化后就得到生石油焦。原油加工過程中,產出的生石油焦一般不到原油的5%。美國生石油焦的年產量約3000萬t。生石油焦中的雜質含量高,不能直接用作增碳劑,必須先經過煅燒處理。 生石油焦有海綿狀、針狀、粒狀和流態等品種。 海綿狀石油焦是用延遲焦化法制得的,由于其中硫和金屬含量較高,通常用作煅燒時的燃料,也可作為煅燒石油焦的原料。經煅燒的海綿焦,主要用于制鋁業和用作增碳劑。 針狀石油焦是用芳香烴含量高、雜質含量低的原料,由延遲焦化法制得的。這種焦炭具有易于破裂的針狀結構,有時稱之為石墨焦,煅燒后主要用于制造石墨電極。 粒狀石油焦呈硬質顆粒狀,是用硫和瀝青烯含量高的原料,用延遲焦化法制得的,主要用作燃料。 流態石油焦是在流態床內用連續焦化法制得的,呈細小顆粒狀,結構無方向性,硫含量高,揮發分低。 石油焦的煅燒是為了脫除硫、水分和揮發分。將生石油焦在1200~1350℃煅燒,可以使其成為基本上純凈的碳。 煅燒石油焦的最大用戶是制鋁業,70%用來制造使鋁礬土還原的陽極。美國生產的煅燒石油焦用于鑄鐵增碳劑的約占6%。 各種石油焦制品的成分列于表1,供參考。 (3)天然石墨 可分為鱗片石墨和微晶石墨兩類。 微晶石墨的灰分含量高,一般不用作鑄鐵的增碳劑。 鱗片石墨有很多品種:高碳鱗片石墨需用化學方法萃取,或加熱到高溫使其中的氧化物分解、揮發,這種鱗片石墨產量不多,價格高,一般也不用作增碳劑;低碳鱗片石墨中的灰分含量高,不宜用作增碳劑;用作增碳劑的主要是中碳鱗片石墨,但實際用量也不多。 天然石墨的成分見表2。
關于鑄造行業常用的幾種增碳劑的成分和堆密度,表3中列出了一些典型的測定數據,可供參照。 2.增碳劑的應用 選用增碳劑時,一般都應該注意以下幾點。 (1)固定碳和灰分的含量 固定碳和灰分是增碳劑中此消彼長的兩個對立參數,也是影響增碳效率的兩個最重要的參數。增碳劑中的固定碳含量高、灰分低,則增碳效率高,反之則增碳效率低。由于生產條件下影響的因素很多,因此很難嚴格評定兩參數各自對增碳效率的影響。灰分高,對增碳有抑制作用,而且還會使爐渣量增多,從而延長作業時間,增加電耗,增加冶煉過程中的勞動量。 從增碳效率考慮,當然希望增碳劑的固定碳含量高一些、灰分低一些,但同時也要考慮生產成本的因素,以及對鐵液質量的影響。 (2)加入方式的影響 增碳劑的加入方式對增碳效率也有很大的影響。 裝料時將增碳劑與爐料混勻,置于感應電爐的底層和中部,增碳效率較高。無芯感應電爐熔煉灰鑄鐵時,鑄鐵的目標成分、各種爐料的配比和其他多種工藝因素,都會影響增碳劑的增碳效率。不同增碳劑的增碳效率可參見表4。 出鐵時在澆包內加增碳劑,然后沖入鐵液,增碳效率比在爐內加入者低得多。美國有人在澆包內加入不同增碳劑進行過對比試驗,其要點如下: 熔煉的鑄鐵是低碳當量鑄鐵,目標成分是:wC= 2.55%,wSi =1.7%,wMn =0.4%。 出鐵溫度為1510~1530℃。 增碳劑加在澆包內,不同增碳劑的增碳效率可參見表5。 (3)增碳劑中的硫含量 熔煉球墨鑄鐵時,應采用硫含量低的增碳劑,雖然低硫增碳劑的價格高,但卻是必需的。熔煉灰鑄鐵時,則宜采用硫含量較高的增碳劑。這樣,不僅可以降低生產成本,而且還可以利用其所含的硫,增強鐵液對孕育處理的回應能力,得到冶金質量高的鑄件。在這種條件下,片面地追求增碳劑“質量高”而選用低硫的品牌,不僅增加生產成本,而且還有負面影響。 (4)增碳劑中的氮含量 灰鑄鐵中含有少量的氮,有促成珠光體的作用,有助于改善鑄鐵的力學性能。如果氮含量(質量分數)在0.01%以上,則鑄件就易于產生“氮致氣孔”。 廢鋼中的氮含量高于鑄造生鐵。用感應電爐熔煉鑄鐵時,由于爐料中所用的鑄造生鐵錠少、廢鋼多,制得的鑄鐵中氮含量會相應較高。 此外,由于爐料中使用大量廢鋼,必須用增碳劑,而大多數增碳劑中氮含量都比較高,這又是導致鑄鐵中氮含量增高的另一因素。 近十多年來,隨著感應電爐的應用不斷增多,增碳劑中的氮含量日益受到重視。為避免鑄件產生氣孔缺陷,感應電爐熔煉鑄鐵時所用的增碳劑,一定要選購含氮量低的品種,如有可能,應核查增碳劑的氮含量。當前的困難在于:分析增碳劑中的氮含量,尚缺乏簡便而準確的方法。 (5)其他工藝因素對增碳效率的影響 除增碳劑中的固定碳含量和灰分對其在鑄鐵中的增碳效率有重要的影響外,增碳劑的粒度、加入的方式、鐵液的溫度,以及爐內的攪拌作用等工藝因素都對增碳效率有明顯的影響。在生產條件下,往往是多種因素同時起作用,難以對每一因素的影響作準確的說明,需要在具體生產條件下通過試驗來優化工藝。 出鐵時將增碳劑加入澆包內,然后沖入鐵液,增碳效率與鐵液的溫度有關。在正常的生產條件下,鐵液溫度較高,則碳較易溶于鐵液,增碳效率因而較高。 一般說來,增碳劑的顆粒小,則其與鐵液接觸的界面面積大,增碳的效率就會較高,但太細的顆粒易于在大氣中氧化,也易于被對流的空氣或抽塵所致的氣流帶走,因此,增碳劑顆粒尺寸的下限值以1.5mm為宜,而且其中不應含有0.15mm以下的細粉。 顆粒尺寸的最大值,應該以能在作業時間內溶入鐵液為度。如果增碳劑在裝料時隨金屬爐料一同加入,碳與金屬的作用時間長,增碳劑的顆粒尺寸可以較大,上限值一般可為12mm。如果在出鐵時加入鐵液中,則顆粒尺寸宜小一些,上限值一般為6.5mm。 攪拌有利于改善增碳劑和鐵液的接觸狀況,提高其增碳效率。在增碳劑與爐料一同加入爐內的情況下,有感應電流的攪拌作用,增碳的效果較好。向包內加增碳劑時,增碳劑可先置于包底,出鐵時使鐵液直沖增碳劑,或連續地將增碳劑投向液流,不可在出鐵后投放在澆包內的液面上。 增碳劑如被卷入爐渣中,就不能與鐵液接觸,當然會嚴重影響增碳效果。因此,如采用在出鐵時增碳的工藝,應特別注意避免渣、鐵混出。
來源:《金屬加工(熱加工)》轉載請注明出處 |
|