在下面這幅圖里,有一個機翼的剖面示意圖。機翼的上表面是彎曲的,下表面是平坦的,因此在機翼與空氣相對運動時,流過上表面的空氣在同一時間(T)內走過的路程(S1)比流過下表面的空氣的路程(S2)遠,所以在上表面的空氣的相對速度比下表面的空氣快(V1=S1/T V2=S2/T1)。 根據帕奴利定理流體對周圍的物質產生的壓力與流體的相對速度成反比。,因此上表面的空氣施加給機翼的壓力 F1 小于下表面的 F2 。F1、F2 的合力必然向上,這就產生了升力。 從機翼的原理,我們也就可以理解螺旋槳的工作原理。螺旋槳就好像一個豎放的機翼,凸起面向前,平滑面向后。旋轉時壓力的合力向前,推動螺旋槳向前,從而帶動飛機向前。當然螺旋槳并不是簡?的凸起平滑,而有著復雜的曲面結構。老式螺旋槳是固定的外形,而后期設計則采用了可以改變的相對角度等設計,改善螺旋槳性能。 飛行需要動力,使飛機前進,更重要的是使飛機獲得升力。早期飛機通常使用活塞發動機作為動力,又以四沖程活塞發動機為主。這類發動機的原理如圖,主要為吸入空氣,與燃油混合后點燃膨脹,驅動活塞往復運動,再轉化為驅動軸的旋轉輸出: 單單一個活塞發動機發出的功率非常有限,因此人們將多個活塞發動機并聯在一起,組成星型或V型活塞發動機。下圖為典型的星型活塞發動機 現代高速?機多數使用噴氣式發動機,原理是將空氣吸入,與燃油混合,點火,爆炸膨脹后的空氣向后噴出,其反作用力則推動飛機向前。下圖的發動機剖面圖里,一個個壓氣風扇從進氣口中吸入空氣,并且一級一級的壓縮空氣,使空氣更好的參與燃燒。 風扇后面橙紅色的空腔是燃燒室,空氣和油料的混和氣體在這里被點燃,燃燒膨脹向后噴出,推動最后兩個風扇旋轉,最后排出發動機外。而最后兩個風扇和前面的壓氣風扇安裝在同一條中軸上,因此會帶動壓氣風扇繼續吸入空氣,從而完成了一個工作循環。 渦輪噴氣發動機 這類發動機的原理基本與上面提到的噴?原理相同,具有加速快、設計簡便等優點。但如果要讓渦噴發動機提高推力,則必須增加燃氣在渦輪前的溫度和增壓比,這將會使排氣速度增加而損失更多動能,于是產生了提高推力和降低油耗的矛盾。因此渦噴發動機油耗大,對于商業民航機來說是個致命弱點。 渦輪風扇發動機 渦輪風扇發動機吸入的空氣一部分從外部管道(外涵道)后吹,一部分送入內涵道核心機(相當于一個純渦噴發動機)。最前端的風扇作用類似螺旋槳,通過降低排氣速度達到提高噴氣發動機推進效率的目的。同時通過精確設計,使更多的燃氣能量經風扇傳遞到涵道,同樣解決了排氣速度過快的問題,從而降低了發動機的油耗。由于該風扇設計要兼顧內外涵道的需要,因此難度遠大于渦噴發動機。 沖壓噴氣發動機 此類發動機沒有風扇等器件,完全靠高速飛行時產生的沖壓效應壓縮吸入的空氣,點火、燃燒、后噴等原理。因此其優點為結構簡單、體積小、推力大、加速快。缺點是需要外部能源進行啟動(通常為火箭助推),不適合循環使用。 |
|