久久精品精选,精品九九视频,www久久只有这里有精品,亚洲熟女乱色综合一区
    分享

    光會Python爬蟲是沒有靈魂的,搭配上數據可視化才是極致!

     AnonymousV臉 2019-01-11

    數據可視化是數據科學家工作中的重要組成部分。在項目的早期階段,你通常會進行探索性數據分析(Exploratory Data Analysis,EDA)以獲取對數據的一些理解。創建可視化方法確實有助于使事情變得更加清晰易懂,特別是對于大型、高維數據集。在項目結束時,以清晰、簡潔和引人注目的方式展現最終結果是非常重要的,因為你的受眾往往是非技術型客戶,只有這樣他們才可以理解。

    Matplotlib 是一個流行的 Python 庫,可以用來很簡單地創建數據可視化方案。但每次創建新項目時,設置數據、參數、圖形和排版都會變得非常繁瑣和麻煩。在這篇博文中,我們將著眼于 5 個數據可視化方法,并使用 Python Matplotlib 為他們編寫一些快速簡單的函數。與此同時,這里有一個很棒的圖表,可用于在工作中選擇正確的可視化方法!

    散點圖

    散點圖非常適合展示兩個變量之間的關系,因為你可以直接看到數據的原始分布。 如下面第一張圖所示的,你還可以通過對組進行簡單地顏色編碼來查看不同組數據的關系。想要可視化三個變量之間的關系? 沒問題! 僅需使用另一個參數(如點大小)就可以對第三個變量進行編碼,如下面的第二張圖所示。

    現在開始討論代碼。我們首先用別名 “plt” 導入 Matplotlib 的 pyplot 。要創建一個新的點陣圖,我們可調用 plt.subplots() 。我們將 x 軸和 y 軸數據傳遞給該函數,然后將這些數據傳遞給 ax.scatter() 以繪制散點圖。我們還可以設置點的大小、點顏色和 alpha 透明度。你甚至可以設置 Y 軸為對數刻度。標題和坐標軸上的標簽可以專門為該圖設置。這是一個易于使用的函數,可用于從頭到尾創建散點圖!

    折線圖

    當你可以看到一個變量隨著另一個變量明顯變化的時候,比如說它們有一個大的協方差,那最好使用折線圖。讓我們看一下下面這張圖。我們可以清晰地看到對于所有的主線隨著時間都有大量的變化。使用散點繪制這些將會極其混亂,難以真正明白和看到發生了什么。折線圖對于這種情況則非常好,因為它們基本上提供給我們兩個變量(百分比和時間)的協方差的快速總結。另外,我們也可以通過彩色編碼進行分組。

    這里是折線圖的代碼。它和上面的散點圖很相似,只是在一些變量上有小的變化。

    直方圖

    直方圖對于查看(或真正地探索)數據點的分布是很有用的。查看下面我們以頻率和 IQ 做的直方圖。我們可以清楚地看到朝中間聚集,并且能看到中位數是多少。我們也可以看到它呈正態分布。使用直方圖真得能清晰地呈現出各個組的頻率之間的相對差別。組的使用(離散化)真正地幫助我們看到了“更加宏觀的圖形”,然而當我們使用所有沒有離散組的數據點時,將對可視化可能造成許多干擾,使得看清真正發生了什么變得困難。

    下面是在 Matplotlib 中的直方圖代碼。有兩個參數需要注意一下:首先,參數 n_bins 控制我們想要在直方圖中有多少個離散的組。更多的組將給我們提供更加完善的信息,但是也許也會引進干擾,使得我們遠離全局;另一方面,較少的組給我們一種更多的是“鳥瞰圖”和沒有更多細節的全局圖。其次,參數 cumulative 是一個布爾值,允許我們選擇直方圖是否為累加的,基本上就是選擇是 PDF(Probability Density Function,概率密度函數)還是 CDF(Cumulative Density Function,累積密度函數)。

    想象一下我們想要比較數據中兩個變量的分布。有人可能會想你必須制作兩張直方圖,并且把它們并排放在一起進行比較。然而,實際上有一種更好的辦法:我們可以使用不同的透明度對直方圖進行疊加覆蓋。看下圖,均勻分布的透明度設置為 0.5 ,使得我們可以看到他背后的圖形。這樣我們就可以直接在同一張圖表里看到兩個分布。

    對于重疊的直方圖,需要設置一些東西。首先,我們設置可同時容納不同分布的橫軸范圍。根據這個范圍和期望的組數,我們可以真正地計算出每個組的寬度。最后,我們在同一張圖上繪制兩個直方圖,其中有一個稍微更透明一些。

    柱狀圖

    當你試圖將類別很少(可能小于10)的分類數據可視化的時候,柱狀圖是最有效的。如果我們有太多的分類,那么這些柱狀圖就會非常雜亂,很難理解。柱狀圖對分類數據很好,因為你可以很容易地看到基于柱的類別之間的區別(比如大小);分類也很容易劃分和用顏色進行編碼。我們將會看到三種不同類型的柱狀圖:常規的,分組的,堆疊的。在我們進行的過程中,請查看圖形下面的代碼。

    常規的柱狀圖如下面的圖1。在 barplot() 函數中,xdata 表示 x 軸上的標記,ydata 表示 y 軸上的桿高度。誤差條是一條以每條柱為中心的額外的線,可以畫出標準偏差。

    分組的柱狀圖讓我們可以比較多個分類變量。看看下面的圖2。我們比較的第一個變量是不同組的分數是如何變化的(組是G1,G2,……等等)。我們也在比較性別本身和顏色代碼。看一下代碼,ydatalist 變量實際上是一個 y 元素為列表的列表,其中每個子列表代表一個不同的組。然后我們對每個組進行循環,對于每一個組,我們在 x 軸上畫出每一個標記;每個組都用彩色進行編碼。

    堆疊柱狀圖可以很好地觀察不同變量的分類。在圖3的堆疊柱狀圖中,我們比較了每天的服務器負載。通過顏色編碼后的堆棧圖,我們可以很容易地看到和理解哪些服務器每天工作最多,以及與其他服務器進行比較負載情況如何。此代碼的代碼與分組的條形圖相同。我們循環遍歷每一組,但這次我們把新柱放在舊柱上,而不是放在它們的旁邊。

    箱形圖

    我們之前看了直方圖,它很好地可視化了變量的分布。但是如果我們需要更多的信息呢?也許我們想要更清晰的看到標準偏差?也許中值與均值有很大不同,我們有很多離群值?如果有這樣的偏移和許多值都集中在一邊呢?

    這就是箱形圖所適合干的事情了。箱形圖給我們提供了上面所有的信息。實線框的底部和頂部總是第一個和第三個四分位(比如 25% 和 75% 的數據),箱體中的橫線總是第二個四分位(中位數)。像胡須一樣的線(虛線和結尾的條線)從這個箱體伸出,顯示數據的范圍。

    由于每個組/變量的框圖都是分別繪制的,所以很容易設置。xdata 是一個組/變量的列表。Matplotlib 庫的 boxplot() 函數為 ydata 中的每一列或每一個向量繪制一個箱體。因此,xdata 中的每個值對應于 ydata 中的一個列/向量。我們所要設置的就是箱體的美觀。

    結語

    使用 Matplotlib 有 5 個快速簡單的數據可視化方法。將相關事務抽象成函數總是會使你的代碼更易于閱讀和使用!我希望你喜歡這篇文章,并且學到了一些新的有用的技巧。如果你確實如此,請隨時給它點贊。

    Cheers!

      本站是提供個人知識管理的網絡存儲空間,所有內容均由用戶發布,不代表本站觀點。請注意甄別內容中的聯系方式、誘導購買等信息,謹防詐騙。如發現有害或侵權內容,請點擊一鍵舉報。
      轉藏 分享 獻花(0

      0條評論

      發表

      請遵守用戶 評論公約

      類似文章 更多

      主站蜘蛛池模板: 福利一区二区1000| 成人免费无码大片A毛片抽搐色欲 成人啪精品视频网站午夜 | 老色鬼永久精品网站| 欧美精品亚洲精品日韩专区| 各种少妇wbb撒尿| 午夜不卡欧美AAAAAA在线观看| 又大又粗又爽A级毛片免费看| 羞羞影院午夜男女爽爽免费视频| 又爽又黄又无遮挡的激情视频| 欧美人与动人物牲交免费观看久久| 成人免费无码大片A毛片抽搐色欲 成人啪精品视频网站午夜 | 亚洲乱码在线卡一卡二卡新区| 国产一卡2卡三卡4卡免费网站| 免费播放一区二区三区| 久久人人爽人人人人片AV| 狠狠爱五月丁香亚洲综| 国产精品毛片在线完整版SAB| 国产又黄又湿又刺激网站| 67194熟妇在线观看线路| 久久五月丁香激情综合| 亚洲av日韩av综合在线观看| 国产裸体XXXX视频在线播放| 四虎成人在线观看免费| 鲁鲁网亚洲站内射污| 99热精品毛片全部国产无缓冲| 欧美人与禽2O2O性论交| 日日躁狠狠躁狠狠爱| 肥臀浪妇太爽了快点再快点| 人妻少妇久久久久久97人妻 | 国产成人高清亚洲综合| 久久久久亚洲精品无码网址 | 欧美日韩一区二区三区视频播放| 在线中文一区字幕对白| 午夜精品一区二区三区在线观看| 中国少妇初尝黑人巨高清| 国内精品久久人妻无码不卡| 亚洲精品无码久久久久去Q| 亚洲高潮喷水无码AV电影| 久久精品国产亚洲av天海翼| 97久久精品无码一区二区| 国产福利在线观看免费第一福利|