這一節課,我們主要回顧一下三角形的相關概念。 一、三角形的分類 幾點說明: 1.三邊互不相等的三角形叫做不等邊三角形;有兩邊相等的三角形叫做等腰三角形;三邊都相等的三角形叫做等邊三角形(正三角形); 2.等腰三角形中至少有兩邊相等,等邊三角形三邊都相等,所以等邊三角形是特殊的等腰三角形; 3.在三角形中,三個內角都是銳角的三角形叫做銳角三角形;有一角是直角的三角形,叫做直角三角形;有一角是鈍角的三角形,叫做鈍角 三角形。 二、三角形的角平分線 定義:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。 拓展: 三角形的三條角分線都在三角形的內部,且三條角分線相交于一點,這個交點叫做三角形的內心。三角形內心這個點到三角形三條邊的距離相等(從三角形內心這個點分別向三條邊做垂線,三條垂線段長度相等)。 三、三角形的中線 定義:在三角形中,連接一個頂點和它所對邊的中點的線段叫做三角形的中線。 拓展: 三角形的三條中線都在三角形內部,且相交于一點,交點叫做三角形的重心。 a.重心到頂點的距離與重心到對邊中點的距離之比為2:1; b.重心和三角形3個頂點組成的3個三角形面積相等; 三角形的一條中線將這個三角形分成面積相等的兩個三角形。 思考:為什么? 四、三角形的高 定義:從三角形的一個頂點向它的對邊所在的直線畫垂線,頂點到垂足之間的線段叫做三角形的高。 拓展:三角形的三條高交于一點,交點叫做三角形的垂心。銳角三角形的垂心在三角形內,直角三角形的垂心在直角頂點上,鈍角三角形的垂心在三角形外。 五、三角形的三邊關系 三角形的任意兩邊之和大于第三邊,兩邊之差小于第三邊。在△ABC中,a,b,c為三條邊長,則有a+b>c,b+c>a,a+c>b;a-b<c,a-c<b,b-c<a。 應用: 1.判斷三條邊能否組成三角形; 2.已知三角形兩邊,判斷第三邊取值范圍。 六、三角形內角和定理 三角形的內角和等于180度。在△ABC中,∠A+∠B+∠C=180°。 應用: 1.在三角形中,已知兩個角度數,可以求出第三個角度數; 2.在三角形中,已知三個內角 比例關系,可以分別求出三個內角度數; 3.在直角三角形中,已知一個角度數,可以求出另一角度數。 七、三角形的外角 定義:三角形的一邊與另一邊的反向延長線所組成的角叫做三角形的外角。(一條邊可以組成兩個外角,一個三角形有六個外角。) 性質: 1.三角形的外角等于與它不相鄰的兩個內角度數之和; 2.三角形的一個 外角大于與它不相鄰的任意一個內角; 3.三角形的外角和是360度。 八、多邊形的相關知識 定義:在平面內,由一些線段首尾順次相接組成的封閉圖形叫做多邊形。如果一個多邊形是由n(n>3)條線段組成,那么這個多邊形就叫n邊形。 幾點說明: 1.多邊形是由同一平面內若干條不在同一直線上的線段組成; 2.是平面內的一些線段首尾順次相連形成的封閉圖形; 3.多邊形的頂點數、邊數、及角的個數相等; 4.多邊形對角線的條數:n(n-3)/2; 5.n多邊形的內角和等于(n-2)180°;外角和等于360°。 好了,這節課我們就先整理到這里。如果有什么遺漏之處,您可以留言補充,也可通過留言把您的問題反饋給我。以便更好的服務大家。 |
|
來自: 昵稱38194863 > 《初中數學》