排列組合問題 1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有() A768種B32種C24種D2的10次方中 解: 根據乘法原理,分兩步: 第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。 第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種 綜合兩步,就有24×32=768種。 2若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有() A119種B36種C59種D48種 解: 5全排列5*4*3*2*1=120 有兩個l所以120/2=60 原來有一種正確的所以60-1=59
容斥原理問題 1.有100種赤貧.其中含鈣的有68種,含鐵的有43種,那么,同時含鈣和鐵的食品種類的值和最小值分別是() A43,25B32,25C32,15D43,11 解:根據容斥原理最小值68+43-100=11 值就是含鐵的有43種 2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)只解出第一題的學生比余下的學生中解出第一題的人數多1人;(4)只解出一道題的學生中,有一半沒有解出第一題,那么只解出第二題的學生人數是() A,5B,6C,7D,8 解:根據“每個人至少答出三題中的一道題”可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。 分別設各類的人數為a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后將④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人數,可以求出它們的整數解: 當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22 又根據a23=a2-a3×2……⑤可知:a2>a3 因此,符合條件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。 故只解出第二題的學生人數a2=6人。 3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那么這次考試的合格率至少是多少? 答案:及格率至少為71%。 假設一共有100人考試 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5題中有1題做錯的最多人數) 87÷3=29(表示5題中有3題做錯的最多人數,即不及格的人數最多為29人) 100-29=71(及格的最少人數,其實都是全對的) 及格率至少為71%
抽屜原理、奇偶性問題 1.一只布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍、黃四種,問最少要摸出幾只手套才能保證有3副同色的? 解:可以把四種不同的顏色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜里至少有2只手套,根據抽屜原理,最少要摸出5只手套。這時拿出1副同色的后4個抽屜中還剩3只手套。再根據抽屜原理,只要再摸出2只手套,又能保證有一副手套是同色的,以此類推。 把四種顏色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5只手套。這時拿出1副同色的后,4個抽屜中還剩下3只手套。根據抽屜原理,只要再摸出2只手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(只) 答:最少要摸出9只手套,才能保證有3副同色的。 2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣? 答案為21 解: 每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法. 當有11人時,能保證至少有2人取得完全一樣: 當有21人時,才能保證到少有3人取得完全一樣. 3.某盒子內裝50只球,其中10只是紅色,10只是綠色,10只是黃色,10只是藍色,其余是白球和黑球,為了確保取出的球中至少包含有7只同色的球,問:最少必須從袋中取出多少只球?解:需要分情況討論,因為無法確定其中黑球與白球的個數。 當黑球或白球其中沒有大于或等于7個的,那么就是: 6*4+10+1=35(個) 如果黑球或白球其中有等于7個的,那么就是: 6*5+3+1=34(個) 如果黑球或白球其中有等于8個的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9個的,那么就是: 6*5+1+1=32 4.地上有四堆石子,石子數分別是1、9、15、31如果每次從其中的三堆同時各取出1個,然后都放入第四堆中,那么,能否經過若干次操作,使得這四堆石子的個數都相同?(如果能請說明具體操作,不能則要說明理由) 不可能。 因為總數為1+9+15+31=56 56/4=14 14是一個偶數 而原來1、9、15、31都是奇數,取出1個和放入3個也都是奇數,奇數加減若干次奇數后,結果一定還是奇數,不可能得到偶數(14個)。 |
|