證明三角函數(shù)直接使用弧度數(shù)軸積分是錯(cuò)誤的 由于y=cosx,假設(shè)x為角度數(shù)軸,在區(qū)間(0,90)上的積分值是180/π,約為57.3,這個(gè)積分值是毫無(wú)疑問(wèn)的正確值,這里以上、以下π都表達(dá)圓周率(常數(shù))。 令x=u*180/π,u為弧度數(shù)軸,則可以推導(dǎo)出,y=cos(u*180/π)在區(qū)間(0,π/2)上的積分值為1,由此可見(jiàn),y=cosu,u為弧度數(shù)軸,在區(qū)間(0,π/2)上的積分值不一定是1,書寫也存在錯(cuò)誤(即三角函數(shù)不能直接使用弧度值、弧度數(shù)軸)。目前高等教育課本上其積分值為1,現(xiàn)在用反證法證明其書寫錯(cuò)誤,其積分值不是1。假設(shè)三角函數(shù)直接可以使用弧度數(shù)軸、弧度值,由于角度和弧度之間存在一個(gè)比例關(guān)系,屬于同一計(jì)量單位,只是進(jìn)制不同,現(xiàn)在令u=t*π/180,則t為角度數(shù)軸,y=cosu在區(qū)間(0,π/2)上的積分值,就轉(zhuǎn)換為y=π/180*cos(t*π/180)在區(qū)間(0,90)上的積分值,利用三角函數(shù)角度數(shù)軸微積分公式,計(jì)算出積分值為180/π*sin(π/2),即180/π*sin(1.57),約為1.569,即y=cosx,x為弧度數(shù)軸,在區(qū)間(0,π/2)上的積分值是1.569,而不是1,從而證明目前高等教育課本上y=cosx的弧度數(shù)軸微積分是錯(cuò)誤的,同理可證目前高等教育三角函數(shù)用弧度數(shù)軸微積分都是錯(cuò)誤的。因此廢除三角函數(shù)直接使用弧度數(shù)軸微積分,已迫在眉睫、急不可待。 建議中國(guó)科學(xué)院數(shù)學(xué)研究所用精密儀器測(cè)量其面積來(lái)驗(yàn)證,特別指出:如果數(shù)軸的單位長(zhǎng)度表達(dá)什么客觀對(duì)象的量綱值1,那么這個(gè)數(shù)軸就表達(dá)什么量綱數(shù)軸。角度數(shù)軸上的實(shí)數(shù)表達(dá)的是角度值,其單位長(zhǎng)度表達(dá)1角度。弧度數(shù)軸上的實(shí)數(shù)表達(dá)的是弧度值,其單位長(zhǎng)度表達(dá)1弧度。1角度表達(dá)圓周角(360度)的1/360,量綱是度,量綱值是1,1弧度表達(dá)圓周弧度(2π弧度)的1/(2π),量綱是弧度,量綱值是1,角度值和弧度值之間存在比例關(guān)系:角度值=弧度值*180/π,實(shí)質(zhì)上角度和弧度都可以看著是兩個(gè)長(zhǎng)度的比值。不同量綱或不同進(jìn)制之間不能直接進(jìn)行加減運(yùn)算,同一量綱之間可以直接進(jìn)行加減運(yùn)算,但不同量綱之間存在乘除運(yùn)算。
|