一、Google的BERT
來源:51CTO技術棧 本文將深入研究大語言模型領域的最新進展,改變AI的6大NLP語言模型,每個模型能夠引入的增強功能、以及潛在功能應用與限制。 在快速發展的人工智能(AI)領域,自然語言處理(Natural Language Processing,NLP)已成為了研究人員和開發人員的關注焦點。作為該領域顯著進步的標志,近年來業界出現了多種突破性的語言模型。它們推動了機器理解和生成能力的進行。在本文中,我們將深入研究大語言模型領域的最新進展,探索每個模型能夠引入的增強功能、以及潛在功能應用。 下面,我們將從2018年具有開創性的BERT模型開始,向您介紹如下大語言模型:
一、Google的BERT
2018年,Google AI團隊推出了源于Transformers的Bidirectional Encoder Representations(BERT)自然語言處理(NLP)模型。它在設計上允許模型考慮每個單詞的左右與上下文。雖然其概念相對簡單,但是BERT能夠在11種NLP任務上獲得最新的結果。其中包括問答、已命名實體識別、以及與一般語言理解相關的其他任務。該模型標志著NLP進入了預訓練語言模型標準的新時代。 1、目標 消除早期語言模型的局限性,特別是在預訓練中表現出的單向性。這些限制了可用于預訓練的架構選擇,以及微調的方法。例如,OpenAI的GPT v1使用從左到右的架構,其中每個token(表征)只關注變形的自我關注層(self-attention)中的先前token。因此,這種設置對于語句級(sentence-level)任務來說是次優的,而對于token級任務則更加不利。畢竟在token級任務中,合并雙方的上下文是非常重要的。 2、如何處理
3、結果 該技術提升了11項NLP任務,其中包括:
4、在哪里可以了解更多關于這項研究的信息?
5、在哪里可以獲得實現代碼?
二、OpenAI的GPT-3
OpenAI團隊引入了GPT-3,作為為每個語言任務提供標記數據集的替代方案。他們建議,擴展語言模型可以提高與任務無關的小樣本(few-shot)性能。為了測試這一建議,他們訓練了一個帶有175B參數的自回歸語言模型——GPT-3,并評估了它在二十多種NLP任務上的性能。在小樣本學習、單樣本學習、以及零樣本學習下的評估表明,GPT-3取得了不俗的結果,它們甚至偶爾會超過微調模型,獲得最新的結果。 1、目標 當需要對每個新語言任務標記數據集時,可將其作為現有解決方案的替代。 2、如何處理
3、結果 未經微調的GPT-3模型在許多NLP任務上都取得了令人滿意的結果,甚至有時超過了針對特定任務進行微調的最先進模型:
在人類參與的評估中,由175b參數的GPT-3模型生成的新聞文章,很難與真實文章相區分開來。 4、在哪里可以了解更多關于這項研究的信息? 研究論文:《小樣本學習語言模型》 5、從哪里可以獲得實現代碼? 雖然無法直接獲得其代碼,但是可以獲取其被發布在GitHub上(https://github.com/openai/gpt-3)的一些統計數據集,以及來自GPT-3的無條件的、未過濾的2048個token的樣本。 三、Google的LaMDA
對話應用語言模型(Language Models for Dialogue Applications,LaMDA)是通過對一組專門為對話設計的、基于Transformer的神經語言模型進行微調而創建的。這些模型最多有137B參數,并且經過訓練可以使用外部的知識來源。LaMDA有三個關鍵性目標——質量、安全性和真實性(groundedness)。結果表明,微調可以縮小其與人類水平的質量差距,但在安全性和真實性方面,該模型的性能仍然低于人類水平。 作為ChatGPT的替代品,谷歌最近發布了由LaMDA提供支持的Bard(https://blog.google/technology/ai/bard-google-ai-search-updates/)。盡管Bard經常被貼上無聊的標簽,但它可以被視為谷歌致力于優先考慮安全的證據。 1、目標 該模型是為開放域的對話式應用構建的。其對話代理不但能夠就任何主題展開對話,而且可以保證其響應是合理的、特定于上下文的、基于可靠來源的、以及合乎道德的。 2、如何處理 基于Transformer(https://ai./2017/08/transformer-novel-neural-network.html)的LaMDA是Google Research于2017年發明并開源的神經網絡架構。和其他BERT和GPT-3等大語言模型類似,LaMDA是在TB級的文本數據的基礎上訓練出來的。它能夠了解單詞之間的關系,進而預測接下來可能出現的單詞。 然而,與大多數語言模型不同的是,LaMDA經歷了對話訓練,因此能夠捕捉到,將開放式對話與其他語言形式區分開來的細微差別。 同時,該模型也通過微調來提高其反應的敏感性、安全性和特殊性。例如,雖然像“那很好(That's nice)”和“我不知道(I don 't know)”之類的短語,在許多對話場景中可能有不同的含義,但是它們不太可能會導致后續有趣對話的發生。 通常,LaMDA生成器首先會生成幾個候選的響應,然后根據它們的安全性、敏感性、特殊性、以及有趣程度,對其進行評分。其中,安全得分較低的響應會被過濾掉。最終,生成器會選擇排名靠前的結果作為響應。 3、結果
4、在哪里可以了解更多關于這項研究的信息?
5、在哪里可以獲得實現代碼? 我們可以在GitHub的鏈:https://github.com/conceptofmind/LaMDA-rlhf-pytorch處,找到用于LaMDA預訓練架構的開源式PyTorch實現。 四、Google的PaLM
Pathways Language Model(PaLM)是一個包含了540億個參數的基于Transformer的語言模型。它使用Pathways在6144個TPU v4芯片上進行訓練。這是一種新的機器學習系統,可在多個TPU Pod上進行高效訓練。該模型展示了在小樣本學習中擴展的好處,能夠在數百種語言理解和生成基準上,產生最先進的結果。PaLM在多步推理任務上優于經過微調的先進模型,而且在BIG基準測試中的表現,也超過了人類的平均水平。 1、目標 提高大語言模型規模對于如何影響小樣本學習的理解。 2、如何處理 該模型的關鍵思想是使用Pathways系統,來擴展具有540億個參數語言模型的訓練:
PaLM模型的訓練數據包括了英語、以及多語言數據集組合,其中不乏高質量的Web文檔、書籍、維基百科、對話、以及GitHub代碼。 3、結果 大量實驗表明,隨著團隊擴展到更大的模型,該模型的性能會急劇上升。目前,PaLM 540B在多項困難任務中,都達到了突破性的性能。例如:
4、在哪里可以了解更多關于這項研究的信息?
5、在哪里可以獲得實現代碼? PaLM研究論文中有關特定Transformer架構的非官方PyTorch實現,可在GitHub的鏈接--https://github.com/lucidrains/PaLM-pytorch處獲得。不過,它不會擴展,僅出于教育目的而發布。 五、Meta AI的LLaMA
Meta AI團隊曾斷言,在更多token上訓練較小的模型,更容易針對特定產品的應用,進行重新訓練和微調。因此,他們引入了LLaMA(Large Language Model Meta AI),這是一組具有7B到65B參數的基礎語言模型。LLaMA 33B和65B在1.4萬億個token上進行了訓練,而最小的模型LLaMA 7B則在13萬億個token上進行了訓練。他們只使用公開可用的數據集,而不依賴于專有或受限的數據。該團隊還實施了關鍵的架構增強和訓練速度的優化技術。總之,LLaMA-3B的性能優于GPT-10,體積小了65倍以上,而LLaMA-65B則表現出與PaLM-540B相仿的性能。 1、目標
2、如何處理 為了訓練LLaMA模型,研究人員只使用公開可用的數據,并與開源相兼容。同時,他們還對標準的Transformer架構進行了一些改進:
最后,Meta AI團隊通過如下方式提高了模型的訓練速度:
3、結果 盡管減小了3倍以上,但是LLaMA-13B仍然超過了GPT-10,而LLaMA-65B仍然相對PaLM-540B具有競爭力。 4、在哪里可以了解更多關于這項研究的信息?
5、在哪里可以獲得實現代碼? Meta AI在個案評估的基礎上,為學術研究人員、政府、民間組織、學術機構、以及全球行業研究實驗室相關的個人,提供了對于LLaMA的訪問。您可以通過GitHub存儲庫的鏈接:https://github.com/facebookresearch/llama進行申請。 六、OpenAI的GPT-4
GPT-4是一種大規模的多態模型,可以接受圖像和文本的輸入,并生成文本輸出。出于競爭和安全的考慮,其相關模型架構和訓練的具體細節被隱匿了。在性能方面,GPT-4在傳統基準測試上已超越了以前的語言模型,并在用戶意圖理解和安全屬性方面表現出了顯著改進。同時,該模型還在各種考試中達到了人類水平的表現能力,例如,在模擬統一律師考試中,就取得了前10%的分數。 1、目標
2、如何處理 鑒于競爭格局和安全影響,OpenAI決定隱瞞有關架構、模型大小、硬件、訓練計算、數據集構建、以及訓練方法等詳細信息,僅透露了:
3、結果
4、在哪里可以了解更多關于這項研究的信息?
5、在哪里可以獲得實現代碼? 目前,仍無法獲悉GPT-4的代碼實現。 七、大語言模型的實際應用
近年來最重要的AI研究突破,主要來自在龐大的數據集上訓練的大語言模型。這些模型展示了卓越的性能,并將對諸如:客服、營銷、電子商務、醫療保健、軟件開發、以及新聞業等領域,帶來徹底的改變。在大語言模型的廣泛應用中,我們以GPT-4為例,其典型應用場景包括:
八、風險和限制
當然,在現實生活中部署此類模型之前,我們需要考慮由此產生的相應風險和限制。有趣的是,如果您向GPT-4詢問其風險和局限性,它可能會為您提供一長串相關考慮。在此基礎上,我進行了按需篩選和添加,并為您列出了如下大語言模型的關鍵風險和限制:
九、小結
綜上所述,大語言模型能夠生成類似人類的文本、自動執行的日常任務、以及在創意和分析過程中提供各項幫助。這使得它們已成為了如今快節奏的、技術驅動的世界中,不可或缺的工具。它們不但徹底改變了自然語言處理領域,并且在提高各類角色和行業的生產力方面,顯示出了巨大的潛力。 當然,正如上文提到的,鑒于大模型的相關局限性與風險,以及可能出現的偏見、錯誤、甚至是惡意使用等問題也不容忽視。隨著我們持續將AI驅動的技術,整合到日常生活中,必須在利用其能力和確保人類監管之間取得平衡。我們只有負責任地去謹慎采用生成式人工智能技術,才能為人類更美好的未來鋪平道路。 |
|
來自: 小飛俠cawdbof0 > 《智能》