1. 油藏裂縫的重要性與基本概念 裂縫在油氣藏中扮演著至關(guān)重要的角色,它們能夠顯著改變儲層的流體流動特性。相互連通的裂縫網(wǎng)絡(luò)為流體的流動和輸送提供了主要的復(fù)雜路徑,從而極大地增強(qiáng)了儲層的非均質(zhì)性 1。研究表明,裂縫可以提高儲層的滲透率、孔隙度和滲透率各向異性 2。特別是在致密儲層中,天然裂縫成為油氣的重要儲集空間和滲流通道,直接控制著油氣的富集和高產(chǎn) 3。裂縫類型及其分布范圍對油藏的生產(chǎn)具有根本性的影響 5,忽略裂縫的存在可能會導(dǎo)致對儲層生產(chǎn)能力的低估 5。因此,天然裂縫是油氣勘探、地下水供應(yīng)和二氧化碳地質(zhì)封存等領(lǐng)域的重要目標(biāo) 1。全球超過一半的油氣產(chǎn)量來自裂縫性油氣藏 4,這充分說明了精確可靠的裂縫建模技術(shù)的重要性。在碳酸鹽巖儲層中,裂縫常常與巖溶系統(tǒng)相關(guān)聯(lián) 6,進(jìn)一步增加了建模的復(fù)雜性。 油藏裂縫的類型多種多樣,根據(jù)其對孔隙度和滲透率的貢獻(xiàn),可以分為四種基本類型 2。根據(jù)成因,裂縫可分為構(gòu)造縫、成巖縫、風(fēng)化縫和溶蝕縫等,其中與斷層相關(guān)的剪切縫尤為重要 8。裂縫網(wǎng)絡(luò)通常呈現(xiàn)出多級層次結(jié)構(gòu) 6,較小的裂縫依附于較大的裂縫。裂縫密度、方向、長度分布、開度和連通性是描述裂縫網(wǎng)絡(luò)特征的關(guān)鍵參數(shù) 1。此外,裂縫的礦物充填也會影響儲層的性能 2。裂縫的成因和特征各異,這意味著需要多種建模技術(shù)來捕捉這種復(fù)雜性。裂縫網(wǎng)絡(luò)的分層特性表明,建模工作需要考慮不同尺度裂縫之間的相互作用。較小裂縫與較大裂縫的連接方式能夠顯著影響整體的連通性和流動性。鑒于裂縫性油氣藏對全球油氣生產(chǎn)的巨大貢獻(xiàn),開發(fā)精確可靠的裂縫建模技術(shù)顯得至關(guān)重要。 2. 油藏裂縫建模的主要技術(shù) 目前,油藏裂縫建模主要有三種技術(shù):等效連續(xù)介質(zhì)模型(ECM)、離散裂縫網(wǎng)絡(luò)模型(DFN)和混合模型方法。 等效連續(xù)介質(zhì)模型(ECM)將裂縫性儲層視為具有平均屬性的連續(xù)介質(zhì) 10。該方法使用滲透率張量來反映裂縫巖體的整體滲透性 13,與離散模型相比,ECM更簡單且計(jì)算效率更高 14。然而,當(dāng)裂縫和基質(zhì)之間的滲透率差異較大時(shí),ECM的精度可能會降低 10。離散化過程中選擇合適的網(wǎng)格尺寸對于保證ECM的準(zhǔn)確性至關(guān)重要 11。ECM可以與隨機(jī)技術(shù)相結(jié)合使用 6。雖然ECM為大規(guī)模模擬提供了一種計(jì)算上可行的方案,但在高度非均質(zhì)的裂縫性儲層中,它可能會犧牲一定的精度。這是因?yàn)槠骄鶎傩钥赡軙交魡蝹€裂縫及其連通性的關(guān)鍵細(xì)節(jié)。此外,ECM的準(zhǔn)確性高度依賴于網(wǎng)格尺寸等參數(shù)的適當(dāng)選擇,這表明需要仔細(xì)的校準(zhǔn)。不恰當(dāng)?shù)木W(wǎng)格尺寸可能導(dǎo)致信息丟失或人為的連通性。 離散裂縫網(wǎng)絡(luò)模型(DFN)將單個裂縫明確地表示為具有特定屬性的離散表面 12。與ECM相比,DFN能夠更好地捕捉裂縫的非均質(zhì)性和多尺度性 12。然而,DFN需要詳細(xì)的裂縫幾何、分布和連通性數(shù)據(jù) 6,并且對于裂縫密度高的儲層,其計(jì)算成本可能非常高 11。DFN已越來越多地應(yīng)用于各種項(xiàng)目,包括流體流動和輸送、水力壓裂和隧道工程 17。根據(jù)數(shù)據(jù)的尺度和可用性,DFN可以是隨機(jī)的或確定性的 12。DFN能夠更真實(shí)地表示裂縫性儲層,但需要大量的計(jì)算資源和詳細(xì)的輸入數(shù)據(jù)。明確地模擬每個裂縫可以準(zhǔn)確地表示流動路徑,但也增加了模型的復(fù)雜性。DFN處理多尺度裂縫的能力使其在具有復(fù)雜裂縫模式的儲層中尤其有價(jià)值。天然裂縫網(wǎng)絡(luò)通常跨越廣泛的尺度范圍,DFN可以適應(yīng)這一點(diǎn)。 混合模型方法結(jié)合了ECM和DFN的優(yōu)點(diǎn) 14。該方法使用ECM模擬小裂縫和孔洞,并使用DFN顯式地模擬大裂縫 14。混合模型可以在提高計(jì)算效率的同時(shí),保持關(guān)鍵流動路徑的精度 14,并允許將一部分裂縫表示為連續(xù)介質(zhì),其余部分表示為離散裂縫 19。混合模型代表了DFN的精度和ECM的效率之間的一種實(shí)用的折衷方案。通過使用適當(dāng)?shù)姆椒ㄌ幚聿煌叨鹊牧芽p,可以在不顯著損失精度的前提下管理計(jì)算成本。然而,在混合模型中,將裂縫適當(dāng)?shù)貏澐譃檫B續(xù)和離散子集仍然是一個持續(xù)存在的挑戰(zhàn)。確定在哪個尺度上進(jìn)行ECM和DFN之間的轉(zhuǎn)換對于模型性能至關(guān)重要。 表1:油藏裂縫建模技術(shù)比較 技術(shù) | 原理 | 優(yōu)點(diǎn) | 局限性 | 典型應(yīng)用 | | 將裂縫性儲層視為具有平均屬性的連續(xù)介質(zhì) | | | | 離散裂縫網(wǎng)絡(luò)模型 (DFN) | | | 計(jì)算成本高,需要詳細(xì)的輸入數(shù)據(jù) | 詳細(xì)的裂縫網(wǎng)絡(luò)分析,水力壓裂模擬 | | 結(jié)合ECM和DFN的優(yōu)點(diǎn) | 提高計(jì)算效率,同時(shí)保持關(guān)鍵流動路徑的精度 | | |
1. 油藏裂縫建模的前沿發(fā)展方向 油藏裂縫建模領(lǐng)域正在經(jīng)歷快速發(fā)展,涌現(xiàn)出多種前沿技術(shù),旨在更準(zhǔn)確、更有效地描述和預(yù)測裂縫性儲層的行為。 地質(zhì)統(tǒng)計(jì)學(xué)方法在裂縫建模中發(fā)揮著越來越重要的作用。該方法利用統(tǒng)計(jì)學(xué)原理創(chuàng)建模型,以表示裂縫在儲層中的空間分布和特征 6。地質(zhì)統(tǒng)計(jì)學(xué)方法整合了來自露頭觀測、巖心數(shù)據(jù)、測井和地震數(shù)據(jù)等多種來源的信息 22,并采用變異函數(shù)分析、克里格法和序貫?zāi)M等技術(shù) 6。多點(diǎn)地質(zhì)統(tǒng)計(jì)學(xué)(MPG)將數(shù)據(jù)條件化與地質(zhì)模式的重建相結(jié)合 22,而概率融合技術(shù)則整合來自多個來源的數(shù)據(jù) 12。這些方法已被應(yīng)用于斷層控制的致密砂巖儲層建模 22。地質(zhì)統(tǒng)計(jì)學(xué)方法提供了一個將不確定性和空間變異性納入裂縫模型的框架。由于地下特征的固有不確定性,隨機(jī)方法對于生成真實(shí)的裂縫網(wǎng)絡(luò)模型至關(guān)重要。通過地質(zhì)統(tǒng)計(jì)學(xué)整合各種數(shù)據(jù)來源,可以提高裂縫模型的可靠性和準(zhǔn)確性。結(jié)合來自不同尺度和類型的測量信息,能夠更全面地理解裂縫系統(tǒng)。 基于過程的裂縫建模技術(shù)側(cè)重于模擬導(dǎo)致裂縫形成和演化的物理過程 9。該方法通常涉及對構(gòu)造應(yīng)力場的地球力學(xué)模擬 4,并可以模擬裂縫相對于褶皺和斷層形成的時(shí)間 23。相場建模將尖銳的裂縫表面近似為彌散界面,能夠模擬復(fù)雜的裂縫拓?fù)浣Y(jié)構(gòu) 31,并且可以分別處理張性和剪切性裂縫 32。近場動力學(xué)模型是一種非局部方法,無需明確的準(zhǔn)則即可捕捉動態(tài)裂縫的擴(kuò)展和分支 36。與純粹的數(shù)據(jù)驅(qū)動方法相比,基于過程的建模能夠更深入地理解裂縫的形成機(jī)制。通過模擬潛在的物理過程,這些技術(shù)可能預(yù)測數(shù)據(jù)有限區(qū)域的裂縫模式。相場和近場動力學(xué)模型代表了先進(jìn)的基于過程的技術(shù),能夠處理諸如分支和合并等復(fù)雜的裂縫行為。這些方法克服了傳統(tǒng)斷裂力學(xué)方法在處理復(fù)雜裂縫幾何形狀方面的一些限制。 多尺度裂縫建模方法旨在解決裂縫以不同尺度存在并對流體流動產(chǎn)生不同影響的挑戰(zhàn) 12。該方法結(jié)合了確定性建模(用于大型裂縫)和隨機(jī)建模(用于中小型裂縫) 12。基于FE2等方法的層次多尺度模型也被應(yīng)用 44。混合模型本質(zhì)上是多尺度的,結(jié)合了連續(xù)和離散的表示方法 14。多尺度建模對于準(zhǔn)確表示儲層內(nèi)不同尺寸裂縫的復(fù)雜相互作用至關(guān)重要。流動行為受到大型導(dǎo)流裂縫和較小但數(shù)量更多的裂縫(它們有助于儲集和連通性)的影響。有效的尺度轉(zhuǎn)換技術(shù)對于橋接精細(xì)尺度裂縫描述和粗尺度儲層模擬模型之間的差距至關(guān)重要。直接在儲層尺度上模擬所有裂縫通常在計(jì)算上是不可行的,因此需要一些方法來表示較小尺度裂縫的有效屬性。 非常規(guī)油藏(如頁巖氣和致密油)由于其低滲透性和復(fù)雜的裂縫網(wǎng)絡(luò),需要專門的裂縫建模技術(shù) 12。水力壓裂是一種關(guān)鍵的增產(chǎn)技術(shù),對其幾何形狀以及與天然裂縫相互作用的建模至關(guān)重要 45。模型范圍從二維(PKN、KGD)到準(zhǔn)三維和全三維 45。離散裂縫網(wǎng)絡(luò)(DFN)模型被廣泛用于描述頁巖儲層中復(fù)雜的裂縫網(wǎng)絡(luò) 51。分形理論和無網(wǎng)格方法正在被探索用于模擬分形頁巖油藏中壓裂水平井的油水流動 50。模擬水力裂縫及其與預(yù)先存在的天然裂縫的相互作用對于優(yōu)化非常規(guī)儲層的產(chǎn)量至關(guān)重要。水力壓裂處理的有效性在很大程度上取決于所產(chǎn)生的裂縫網(wǎng)絡(luò)復(fù)雜性。非常規(guī)儲層中的納米級孔隙度增加了裂縫建模的復(fù)雜性,需要考慮多物理場和多相流 46。納米級孔隙中的流體流動機(jī)制可能與常規(guī)儲層中的流體流動機(jī)制顯著不同。 表2:油藏裂縫建模的前沿發(fā)展方向 發(fā)展方向 | 關(guān)鍵原理/技術(shù) | 近期進(jìn)展 | 應(yīng)用示例 | 地質(zhì)統(tǒng)計(jì)學(xué)方法 | 統(tǒng)計(jì)學(xué)方法,多點(diǎn)地質(zhì)統(tǒng)計(jì)學(xué) (MPG),概率融合 | | | | 地球力學(xué)模擬,相場建模,近場動力學(xué)模型 | 模擬裂縫形成機(jī)制,處理復(fù)雜裂縫拓?fù)?/span> | | | 確定性與隨機(jī)方法結(jié)合,混合模型,尺度轉(zhuǎn)換 | | 復(fù)雜裂縫網(wǎng)絡(luò)的儲層模擬 | | 水力壓裂模型 (2D/3D),DFN模型,分形理論 | 優(yōu)化水力壓裂效果,描述復(fù)雜裂縫網(wǎng)絡(luò) | |
1.人工智能與機(jī)器學(xué)習(xí)在裂縫建模中的應(yīng)用 人工智能(AI)和機(jī)器學(xué)習(xí)(ML)正在油藏裂縫建模領(lǐng)域展現(xiàn)出巨大的潛力,為裂縫的識別、預(yù)測、模型參數(shù)優(yōu)化以及動態(tài)數(shù)據(jù)集成等方面帶來了創(chuàng)新性的解決方案。 利用AI/ML進(jìn)行裂縫識別與預(yù)測已成為一個熱門的研究方向 54。深度學(xué)習(xí)和計(jì)算機(jī)視覺技術(shù)被廣泛應(yīng)用于各種材料和結(jié)構(gòu)中的裂縫檢測 54。AI能夠提高單井測井裂縫識別的準(zhǔn)確性 61。機(jī)器學(xué)習(xí)模型可以預(yù)測裂縫的擴(kuò)展,并模擬裂縫網(wǎng)絡(luò)中的流體流動行為 58。AI/ML為自動化和提高來自各種數(shù)據(jù)源的裂縫識別和預(yù)測的準(zhǔn)確性提供了強(qiáng)大的工具。AI從大型數(shù)據(jù)集中學(xué)習(xí)復(fù)雜模式的能力使其非常適合分析裂縫數(shù)據(jù)。AI還有可能克服傳統(tǒng)方法在處理與裂縫網(wǎng)絡(luò)相關(guān)的復(fù)雜性和不確定性方面的一些限制。數(shù)據(jù)驅(qū)動的AI模型可以捕獲僅使用基于物理的方法可能難以建模的非線性關(guān)系。 AI/ML在優(yōu)化模型參數(shù)和提高預(yù)測精度方面也發(fā)揮著重要作用。AI/ML被用于優(yōu)化水力壓裂處理,包括壓裂段數(shù)和流體體積等參數(shù) 58。機(jī)器學(xué)習(xí)模型可以預(yù)測壓裂井的產(chǎn)量 58。AI技術(shù)可以預(yù)測酸壓裂縫的導(dǎo)流能力 58。結(jié)合不同算法的混合AI模型(例如,ML-PSO)正在被開發(fā),以優(yōu)化壓裂參數(shù)并最大化經(jīng)濟(jì)回報(bào) 62。AI/ML可以通過優(yōu)化與裂縫增產(chǎn)和生產(chǎn)相關(guān)的關(guān)鍵操作參數(shù),顯著提高儲層開發(fā)的效率和有效性。快速評估眾多方案并識別最佳條件的能力使AI成為決策的寶貴工具。 AI/ML在動態(tài)數(shù)據(jù)集成與模型更新方面展現(xiàn)出巨大的潛力。AI/ML可以用于整合生產(chǎn)數(shù)據(jù)并以概率方式更新儲層模型 65。機(jī)器學(xué)習(xí)可以輔助歷史擬合,通過根據(jù)生產(chǎn)數(shù)據(jù)調(diào)整模型參數(shù)來實(shí)現(xiàn) 65。AI/ML有望改進(jìn)動態(tài)數(shù)據(jù)在裂縫模型中的集成,從而產(chǎn)生更準(zhǔn)確和最新的儲層行為表示。動態(tài)數(shù)據(jù)與儲層參數(shù)之間的非線性關(guān)系可以被AI模型有效地捕獲。 表3:人工智能與機(jī)器學(xué)習(xí)在裂縫建模中的應(yīng)用 應(yīng)用領(lǐng)域 | AI/ML技術(shù) | 主要成果/優(yōu)勢 | | 深度學(xué)習(xí),計(jì)算機(jī)視覺,支持向量機(jī) (SVM),人工神經(jīng)網(wǎng)絡(luò) (ANN) | 提高裂縫檢測準(zhǔn)確性,自動化裂縫識別過程 | | 遺傳算法 (GA),粒子群優(yōu)化 (PSO),人工神經(jīng)網(wǎng)絡(luò) (ANN) | 優(yōu)化水力壓裂參數(shù),提高油井產(chǎn)量 | | 概率模型,人工神經(jīng)網(wǎng)絡(luò) (ANN) | 整合生產(chǎn)數(shù)據(jù),更新儲層模型,輔助歷史擬合 |
1. 動態(tài)數(shù)據(jù)集成與流體-巖石相互作用 將動態(tài)數(shù)據(jù)集成到裂縫模型中以及考慮流體-巖石相互作用對于提高裂縫性儲層模型的預(yù)測能力至關(guān)重要。 將動態(tài)數(shù)據(jù)融入裂縫模型的方法多種多樣。生產(chǎn)歷史和井測試數(shù)據(jù)等動態(tài)數(shù)據(jù)被用于優(yōu)化地下裂縫圖 65。靜態(tài)模型和動態(tài)數(shù)據(jù)之間的迭代循環(huán)被用于改進(jìn)裂縫網(wǎng)絡(luò)模型的實(shí)現(xiàn) 66。結(jié)合離散裂縫模型的數(shù)值井測試技術(shù)有助于表征裂縫-基質(zhì)的屬性 66。地震監(jiān)測數(shù)據(jù)也可能被用于裂縫模型中,盡管具體細(xì)節(jié)在提供的片段中沒有詳細(xì)說明 65。整合動態(tài)數(shù)據(jù)為裂縫模型提供了寶貴的約束,確保模型與隨時(shí)間觀察到的儲層行為一致。單獨(dú)的靜態(tài)模型可能無法捕捉生產(chǎn)過程中儲層內(nèi)發(fā)生的動態(tài)變化。 考慮流體-巖石相互作用的建模技術(shù)對于準(zhǔn)確預(yù)測裂縫性儲層的行為至關(guān)重要。模擬通過裂縫網(wǎng)絡(luò)的耦合水力-熱力-化學(xué)流體流動非常重要 67。例如,可以模擬基于流體-巖石反應(yīng)的地下原位開采過程 67。礦物溶解或沉淀會影響裂縫的開度和流動 68。理解流體力學(xué),包括氣相行為,是裂縫性巖石的關(guān)鍵 68。流體-巖石相互作用會顯著改變裂縫的屬性和流動行為,因此將其納入建模工作對于準(zhǔn)確預(yù)測至關(guān)重要。流體-巖石界面發(fā)生的化學(xué)反應(yīng)和物理過程會影響裂縫的導(dǎo)流能力和儲集能力。 2. 高性能計(jì)算在復(fù)雜裂縫網(wǎng)絡(luò)模擬中的應(yīng)用 復(fù)雜裂縫網(wǎng)絡(luò)模型的模擬通常需要大量的計(jì)算資源 14。高性能計(jì)算(HPC)使得能夠模擬包含數(shù)十億未知數(shù)的大規(guī)模模型 69。并行儲層模擬器(PRS)與嵌入式離散裂縫模型(EDFM)相結(jié)合,可以高效地模擬三維裂縫網(wǎng)絡(luò) 53。耦合孔隙尺度和場尺度模型以模擬裂縫演化也需要HPC 70。HPC對于應(yīng)對模擬真實(shí)和復(fù)雜的儲層尺度裂縫網(wǎng)絡(luò)所需的計(jì)算需求至關(guān)重要。裂縫的數(shù)量以及復(fù)雜的流動過程需要大量的計(jì)算能力。利用GPU加速等先進(jìn)計(jì)算技術(shù)可以顯著加快裂縫建模的計(jì)算速度,例如蒙特卡羅最小化 71。下一代百億億次級架構(gòu)(包括GPU加速)需要性能可移植的代碼 70。利用GPU加速等先進(jìn)計(jì)算技術(shù)可以顯著縮短復(fù)雜裂縫模型的模擬時(shí)間,使其更適用于實(shí)際應(yīng)用。更快的模擬可以進(jìn)行更多的迭代和敏感性分析,最終做出更好的儲層管理決策。 3. 結(jié)論與未來展望 當(dāng)前的油藏裂縫建模技術(shù)已經(jīng)取得了顯著的進(jìn)展,從基本的等效連續(xù)介質(zhì)模型、離散裂縫網(wǎng)絡(luò)模型到混合模型,各種方法都在不斷發(fā)展和完善。近年來,地質(zhì)統(tǒng)計(jì)學(xué)方法、基于過程的建模技術(shù)和多尺度建模方法成為研究的熱點(diǎn),它們在處理儲層裂縫的復(fù)雜性和非均質(zhì)性方面展現(xiàn)出強(qiáng)大的能力。人工智能和機(jī)器學(xué)習(xí)的興起為裂縫的識別、預(yù)測、模型優(yōu)化和動態(tài)數(shù)據(jù)集成提供了新的途徑。此外,動態(tài)數(shù)據(jù)的集成以及對流體-巖石相互作用的考慮,使得裂縫模型能夠更真實(shí)地反映儲層的實(shí)際狀況。高性能計(jì)算的進(jìn)步則為大規(guī)模復(fù)雜裂縫網(wǎng)絡(luò)的模擬提供了強(qiáng)有力的支撐。 展望未來,油藏裂縫建模將朝著更真實(shí)、更精確的預(yù)測方向發(fā)展。提高裂縫網(wǎng)絡(luò)模型的真實(shí)性,需要更有效地利用數(shù)據(jù)方差和實(shí)際裂縫連接信息 72。離散裂縫網(wǎng)絡(luò)模型將在流體流動和輸運(yùn)預(yù)測方面取得更大的進(jìn)展 17。開發(fā)更魯棒、更高效的尺度轉(zhuǎn)換技術(shù),以保留地球力學(xué)特征,仍然是重要的研究方向 16。進(jìn)一步加強(qiáng)動態(tài)數(shù)據(jù)在裂縫模型中的集成,以實(shí)現(xiàn)更好的歷史擬合和不確定性降低 65。人工智能和機(jī)器學(xué)習(xí)技術(shù)將在裂縫預(yù)測、參數(shù)優(yōu)化和動態(tài)數(shù)據(jù)集成方面發(fā)揮越來越重要的作用。解決與高保真裂縫網(wǎng)絡(luò)模擬相關(guān)的計(jì)算成本問題,以及改進(jìn)不同尺度下流體-巖石相互作用的建模,也將是未來的研究重點(diǎn)。 為了進(jìn)一步推動油藏裂縫建模技術(shù)的發(fā)展,建議未來的研究可以重點(diǎn)關(guān)注以下幾個方面:探索用于裂縫預(yù)測和表征的新型AI/ML架構(gòu);開發(fā)更高效、更準(zhǔn)確的多尺度建模技術(shù);改進(jìn)儲層模擬器中流體-巖石相互作用的表示方法;重視裂縫網(wǎng)絡(luò)模型中的不確定性量化;為不同的裂縫建模方法創(chuàng)建基準(zhǔn)數(shù)據(jù)集和驗(yàn)證研究。這些努力將有助于構(gòu)建更精確、更可靠的裂縫性儲層模型,為油氣資源的有效開發(fā)和管理提供有力支持。 參考文獻(xiàn)- 1. Fractured Reservoir Research - Geological Survey of Alabama[1]
- 2. Fractured reservoir evaluation - AAPG Wiki[2]
- 3. Geomechanical log responses and identification of fractures in tight sandstone, West Sichuan Xinchang Gas Field - PubMed Central[3]
- 4. Prediction of natural fracture distribution characteristics in tight oil and gas reservoirs based on paleotectonic stress field - Frontiers[4]
- 5. Influence of Fracture Types on Oil Production in Naturally Fractured Reservoirs - MDPI[5]
- 6. Fractured reservoirs modelling: A review of the challenges and some recent solutions[6]
- 7. New Fractured Reservoir Classification[7]
- 8. Fracture Characteristics and its Role in Bedrock Reservoirs in the Kunbei Fault Terrace Belt of Qaidam Basin, China - Frontiers[8]
- 9. A Comprehensive Review of Fracture Characterization and Its Impact on Oil Production in Naturally Fractured Reservoirs - MDPI[9]
- 11. (PDF) Equivalent continuum-based upscaling of flow in discrete ...[11]
- 12. A fracture modeling method for ultra-deep reservoirs based on geologic information fusion: an application to a low porosity sandstone reservoirs in X gas field of a basin in western China - Frontiers[12]
- 13. A New Method for Inversion of Dam Foundation Hydraulic Conductivity Using an Improved Genetic Algorithm Coupled with an Unsaturated Equivalent Continuum Model and Its Application - MDPI[13]
- 14. An Efficient Hybrid Model for Fractured-vuggy Reservoir Based on Discrete Fracture-vug Network Model - ResearchGate[14]
- 16. Discrete Fracture Network Modeling: Current Status and Future Trends - CLU-IN[16]
- 17. (PDF) Advances in discrete fracture network modeling - ResearchGate[17]
- 18. A Dynamic Hybrid Model to Simulate Fractured Reservoirs | Earthdoc[18]
- 20. A Review of the Dynamic Modeling Approaches for Characterizing Fluid Flow in Naturally Fractured Reservoirs - ResearchGate[20]
- 21. A Review of Geostatistical Reservoir Modeling Development - ResearchGate[21]
- 22. Multiple-Point Geostatistical Modeling for Fault-Controlled ... - Frontiers[22]
- 23. Fractured Reservoir Characterization and Modeling - JOGMEC[23]
- 24. Petrel fracture modeling | SLB[24]
- 25. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS - OSTI[25]
- 26. Exploring Fracture Patterns: Assessing Representation Methods for Bone Fracture Simulation - PMC[26]
- 27. (PDF) Phase field modelling of fracture - ResearchGate[27]
- 28. Phase-field models of floe fracture in sea ice - TC - Copernicus.org[28]
- 29. Numerical Simulation Analysis of Fracture Propagation in Rock Based on Smooth Particle Hydrodynamics - MDPI[29]
- 30. Numerical Simulation of Fracture Propagation Based on Finite Element Method and Peridynamics - Cronfa - Swansea University[30]
- 31. (PDF) A phase‐field method for modeling cracks with frictional contact[31]
- 32. Phase-field modeling of geologic fractures - Frontiers[32]
- 33. Applications of phase-field modeling in hydraulic fracture - University of Texas at Austin[33]
- 34. Applications of Phase Field Methods in Modeling Fatigue Fracture ...[34]
- 35. Phase field modeling of crack propagation: Philosophical Magazine - Taylor and Francis[35]
- 36. Studies of dynamic crack propagation and crack branching with ...[36]
- 37. Studies of dynamic crack propagation and crack branching with peridynamics - UNL Digital Commons - University of Nebraska–Lincoln[37]
- 38. Numerical Simulation of Crack Propagation and Branching ... - MDPI[38]
- 39. Fine Modeling of Multiscale Fracture Cavity Fusion in Fault Solution ...[39]
- 40. Fine Modeling of Multiscale Fracture Cavity Fusion in Fault Solution Reservoirs Based on Multiscale Discrete Crack Modeling Method | ACS Omega - ACS Publications[40]
- 41. Augmented multiscale linear solver for mechanics in fractured formations[41]
- 42. multiscale simulation of flow and heat transport in fractured geothermal reservoirs: inexact solvers - Stanford University[42]
- 43. (PDF) A Multiscale Approach for Characterising Fractured Reservoirs, Workflow for Geological Modelling of a Hungarian Reservoir - ResearchGate[43]
- 44. Computational multiscale modeling of fracture problems and its model order reduction - Caicedo et al 2017b - Scipedia[44]
- 45. (PDF) Hydraulic Fracture Geometry Modeling Techniques for ...[45]
- 46. Simulation of Unconventional Reservoirs with Complex Fracture Conditions - OAKTrust[46]
- 47. Numerical modeling of complex hydraulic fracture development in ...[47]
- 48. Advances in Hydraulic Fracture Propagation Research in Shale Reservoirs - MDPI[48]
- 49. Fracture Modeling of Shale Oil and Gas Reservoirs in Texas - MDPI[49]
- 50. Enhancing oil-water flow simulation in shale reservoirs with fractal theory and meshless method - Frontiers[50]
- 51. Modeling Complexities Of Natural Fracturing Key In Gas Shales[51]
- 52. Modeling hydraulic fractures | SLB[52]
- 53. SPE-213202-MS Unconventional Reservoir Modeling ... - OnePetro[53]
- 54. Using AI for crack detection and segmentation - Ultralytics[54]
- 55. Machine Learning for Crack Detection: Review and Model ...[55]
- 56. Trendspek Develops AI-Powered Crack Detection with Datature[56]
- 57. Drexel Researchers Propose AI-Guided System for Robotic ...[57]
- 58. An Artificial Intelligence-Based Model for Performance Prediction of ...[58]
- 59. (PDF) An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs - ResearchGate[59]
- 60. Application of Machine Learning in Hydraulic Fracturing: A Review ...[60]
- 61. (PDF) An intelligent prediction method of fractures in tight carbonate ...[61]
- 62. Machine learning-based fracturing parameter optimization for ...[62]
- 63. 3D fracture modeling in Parsi oil field using artificial intelligence tools - ResearchGate[63]
- 64. AI-Driven Crack Detection for Remanufacturing Cylinder Heads ...[64]
- 65. A probabilistic approach to integrating dynamic data in reservoir ...[65]
- 66. (PDF) Integration of static and dynamic reservoir data to optimize the ...[66]
- 67. Modelling of Coupled Hydro-Thermo-Chemical Fluid Flow through ...[67]
- 68. 3 Hydrology: Fluid Flow - Characterization and Remediation of Fractured Rock - ITRC[68]
- 69. HPCSIM Frontiers of High-Performance Computing in Modeling and Simulation | EnginSoft[69]
- 71. Algorithms and Software for High-Performance Fracture Simulation ...[71]
- 72. A Developed Computational Code to Build a 3D Fracture Network to ...[72]
- 73. (PDF) A new approach to upscaling fracture network models while ...[73]
- 74. An Integrated Discrete Fracture Model for Description of Dynamic Behavior in Fractured Reservoirs[74]
引用鏈接[1] Fractured Reservoir Research - Geological Survey of Alabama:https://www.gsa.state./gsa/energy/og/fractured
[2] Fractured reservoir evaluation - AAPG Wiki:https://wiki./Fractured_reservoir_evaluation
[3] Geomechanical log responses and identification of fractures in tight sandstone, West Sichuan Xinchang Gas Field - PubMed Central:https://pmc.ncbi.nlm./articles/PMC9478147/
[4] Prediction of natural fracture distribution characteristics in tight oil and gas reservoirs based on paleotectonic stress field - Frontiers:https://www./journals/energy-research/articles/10.3389/fenrg.2023.1324934/full
[5] Influence of Fracture Types on Oil Production in Naturally Fractured Reservoirs - MDPI:https://www./1996-1073/15/19/7321
[6] Fractured reservoirs modelling: A review of the challenges and some recent solutions:https://www./publication/242645015_Fractured_reservoirs_modelling_A_review_of_the_challenges_and_some_recent_solutions
[7] New Fractured Reservoir Classification:https:///new-fractured-reservoir-classification/
[8] Fracture Characteristics and its Role in Bedrock Reservoirs in the Kunbei Fault Terrace Belt of Qaidam Basin, China - Frontiers:https://www./journals/earth-science/articles/10.3389/feart.2022.865534/full
[9] A Comprehensive Review of Fracture Characterization and Its Impact on Oil Production in Naturally Fractured Reservoirs - MDPI:https://www./1996-1073/16/8/3437
[10] pangea.:https://pangea./ERE/pdf/IGAstandard/SGW/2013/Hao.pdf
[11] (PDF) Equivalent continuum-based upscaling of flow in discrete ...:https://www./publication/348340786_Equivalent_continuum-based_upscaling_of_flow_in_discrete_fracture_networks_The_fracture-and-pipe_model
[12] A fracture modeling method for ultra-deep reservoirs based on geologic information fusion: an application to a low porosity sandstone reservoirs in X gas field of a basin in western China - Frontiers:https://www./journals/earth-science/articles/10.3389/feart.2023.1351264/full
[13] A New Method for Inversion of Dam Foundation Hydraulic Conductivity Using an Improved Genetic Algorithm Coupled with an Unsaturated Equivalent Continuum Model and Its Application - MDPI:https://www./1996-1944/16/4/1662
[14] An Efficient Hybrid Model for Fractured-vuggy Reservoir Based on Discrete Fracture-vug Network Model - ResearchGate:https://www./publication/307573541_An_Efficient_Hybrid_Model_for_Fractured-vuggy_Reservoir_Based_on_Discrete_Fracture-vug_Network_Model
[15] :https:///docs/imwa_2017/IMWA2017_DiggesLaTouche_548.pdf
[16] Discrete Fracture Network Modeling: Current Status and Future Trends - CLU-IN:https:///products/siteprof/2004fracrockconf/cdr_pdfs/indexed/group1/882.pdf
[17] (PDF) Advances in discrete fracture network modeling - ResearchGate:https://www./publication/229047622_Advances_in_discrete_fracture_network_modeling
[18] A Dynamic Hybrid Model to Simulate Fractured Reservoirs | Earthdoc:https://www./content/papers/10.3997/2214-4609-pdb.350.iptc16521?crawler=redirect&mimetype=application/xml
[19] events.:https://events./event/2/contributions/627/contribution.pdf
[20] A Review of the Dynamic Modeling Approaches for Characterizing Fluid Flow in Naturally Fractured Reservoirs - ResearchGate:https://www./publication/352100134_A_Review_of_the_Dynamic_Modeling_Approaches_for_Characterizing_Fluid_Flow_in_Naturally_Fractured_Reservoirs
[21] A Review of Geostatistical Reservoir Modeling Development - ResearchGate:https://www./publication/329734212_A_Review_of_Geostatistical_Reservoir_Modeling_Development
[22] Multiple-Point Geostatistical Modeling for Fault-Controlled ... - Frontiers:https://www./journals/earth-science/articles/10.3389/feart.2025.1552058/abstract
[23] Fractured Reservoir Characterization and Modeling - JOGMEC:https://www.jogmec./content/300199421.pdf
[24] Petrel fracture modeling | SLB:https://www./products-and-services/delivering-digital-at-scale/software/petrel-subsurface-software/petrel/petrel-geology-and-modeling/petrel-fracture-modeling
[25] DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS - OSTI:https://www./servlets/purl/820941
[26] Exploring Fracture Patterns: Assessing Representation Methods for Bone Fracture Simulation - PMC:https://pmc.ncbi.nlm./articles/PMC11051195/
[27] (PDF) Phase field modelling of fracture - ResearchGate:https://www./publication/326258921_Phase_field_modelling_of_fracture
[28] Phase-field models of floe fracture in sea ice - TC - Copernicus.org:https://tc./articles/17/3883/2023/
[29] Numerical Simulation Analysis of Fracture Propagation in Rock Based on Smooth Particle Hydrodynamics - MDPI:https://www./1996-1944/16/19/6560
[30] Numerical Simulation of Fracture Propagation Based on Finite Element Method and Peridynamics - Cronfa - Swansea University:https://cronfa./Record/cronfa59257
[31] (PDF) A phase‐field method for modeling cracks with frictional contact:https://www./publication/336420906_A_phase-field_method_for_modeling_cracks_with_frictional_contact
[32] Phase-field modeling of geologic fractures - Frontiers:https://www./journals/built-environment/articles/10.3389/fbuil.2024.1378966/full
[33] Applications of phase-field modeling in hydraulic fracture - University of Texas at Austin:https://repositories.lib./items/444b9176-ee59-422e-bbc9-75a449ea14c4
[34] Applications of Phase Field Methods in Modeling Fatigue Fracture ...:https://www./2075-4701/13/4/714
[35] Phase field modeling of crack propagation: Philosophical Magazine - Taylor and Francis:https://www./doi/abs/10.1080/14786431003773015
[36] Studies of dynamic crack propagation and crack branching with ...:https://digitalcommons./context/engineeringmechanicsfacpub/article/1070/viewcontent/Bobaru_IJF_2010_Studies_dynamic__DC_VERSION.pdf
[37] Studies of dynamic crack propagation and crack branching with peridynamics - UNL Digital Commons - University of Nebraska–Lincoln:https://digitalcommons./engineeringmechanicsfacpub/71/
[38] Numerical Simulation of Crack Propagation and Branching ... - MDPI:https://www./2075-5309/14/1/158
[39] Fine Modeling of Multiscale Fracture Cavity Fusion in Fault Solution ...:https://pmc.ncbi.nlm./articles/PMC11209890/
[40] Fine Modeling of Multiscale Fracture Cavity Fusion in Fault Solution Reservoirs Based on Multiscale Discrete Crack Modeling Method | ACS Omega - ACS Publications:https://pubs./doi/10.1021/acsomega.4c03892
[41] Augmented multiscale linear solver for mechanics in fractured formations:https://suetri-b./publications/theses/augmented-multiscale-linear-solver-mechanics-fractured-formations
[42] multiscale simulation of flow and heat transport in fractured geothermal reservoirs: inexact solvers - Stanford University:https://pangea./ERE/pdf/IGAstandard/SGW/2013/Sandve.pdf
[43] (PDF) A Multiscale Approach for Characterising Fractured Reservoirs, Workflow for Geological Modelling of a Hungarian Reservoir - ResearchGate:https://www./publication/301373174_A_Multiscale_Approach_for_Characterising_Fractured_Reservoirs_Workflow_for_Geological_Modelling_of_a_Hungarian_Reservoir
[44] Computational multiscale modeling of fracture problems and its model order reduction - Caicedo et al 2017b - Scipedia:https://www./public/Caicedo_et_al_2017b
[45] (PDF) Hydraulic Fracture Geometry Modeling Techniques for ...:https://www./publication/346037310_Hydraulic_Fracture_Geometry_Modeling_Techniques_for_Extracting_Unconventional_Reservoirs
[46] Simulation of Unconventional Reservoirs with Complex Fracture Conditions - OAKTrust:https://oaktrust.library./items/72e0d43f-38d0-4538-9a83-1101ed6a5d22
[47] Numerical modeling of complex hydraulic fracture development in ...:https://repositories.lib./items/963bbfc2-b3a3-4ba2-817f-654ce9cd1a98
[48] Advances in Hydraulic Fracture Propagation Research in Shale Reservoirs - MDPI:https://www./2075-163X/12/11/1438
[49] Fracture Modeling of Shale Oil and Gas Reservoirs in Texas - MDPI:https://www./1996-1073/16/17/6265
[50] Enhancing oil-water flow simulation in shale reservoirs with fractal theory and meshless method - Frontiers:https://www./journals/environmental-science/articles/10.3389/fenvs.2023.1244543/full
[51] Modeling Complexities Of Natural Fracturing Key In Gas Shales:https://www./magazine/cover-story/modeling-complexities-of-natural-fracturing-key-in-gas-shales
[52] Modeling hydraulic fractures | SLB:https://www./resource-library/blogs/di/modeling-hydraulic-fractures
[53] SPE-213202-MS Unconventional Reservoir Modeling ... - OnePetro:https://admin./SPEMEOS/proceedings-pdf/23MEOS/23MEOS/4111790/spe-213202-ms.pdf
[54] Using AI for crack detection and segmentation - Ultralytics:https://www./blog/using-ai-for-crack-detection-and-segmentation
[55] Machine Learning for Crack Detection: Review and Model ...:https:///doi/10.1061/%28ASCE%29CP.1943-5487.0000918
[56] Trendspek Develops AI-Powered Crack Detection with Datature:https:///blog/trendspek-develops-ai-powered-crack-detection-with-datature
[57] Drexel Researchers Propose AI-Guided System for Robotic ...:https:///news/archive/2024/January/AI-robotic-crack-detection-monitoring
[58] An Artificial Intelligence-Based Model for Performance Prediction of ...:https://pmc.ncbi.nlm./articles/PMC8173587/
[59] (PDF) An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs - ResearchGate:https://www./publication/351677052_An_Artificial_Intelligence-Based_Model_for_Performance_Prediction_of_Acid_Fracturing_in_Naturally_Fractured_Reservoirs
[60] Application of Machine Learning in Hydraulic Fracturing: A Review ...:https://pubs./doi/10.1021/acsomega.4c11342
[61] (PDF) An intelligent prediction method of fractures in tight carbonate ...:https://www./publication/366388070_An_intelligent_prediction_method_of_fractures_in_tight_carbonate_reservoirs
[62] Machine learning-based fracturing parameter optimization for ...:https://pmc.ncbi.nlm./articles/PMC10933261/
[63] 3D fracture modeling in Parsi oil field using artificial intelligence tools - ResearchGate:https://www./publication/248254487_3D_fracture_modeling_in_Parsi_oil_field_using_artificial_intelligence_tools
[64] AI-Driven Crack Detection for Remanufacturing Cylinder Heads ...:https://www./2673-4052/5/4/33
[65] A probabilistic approach to integrating dynamic data in reservoir ...:https://www./publication/223086034_A_probabilistic_approach_to_integrating_dynamic_data_in_reservoir_models
[66] (PDF) Integration of static and dynamic reservoir data to optimize the ...:https://www./publication/287159134_Integration_of_static_and_dynamic_reservoir_data_to_optimize_the_generation_of_subsurface_fracture_map
[67] Modelling of Coupled Hydro-Thermo-Chemical Fluid Flow through ...:https://www./2076-3263/11/4/153
[68] 3 Hydrology: Fluid Flow - Characterization and Remediation of Fractured Rock - ITRC:https://fracturedrx-1./3-hydrology-fluid-flow/
[69] HPCSIM Frontiers of High-Performance Computing in Modeling and Simulation | EnginSoft:https://www./news/hpcsim-frontiers-of-high-performance-computing-in-modeling-and-simulation.html
[70] crd.:https://crd./assets/Uploads/FrontiersHPC2024.pdf
[71] Algorithms and Software for High-Performance Fracture Simulation ...:https:///uc/item/0br2k5cc
[72] A Developed Computational Code to Build a 3D Fracture Network to ...:https://www./2076-3263/15/1/6
[73] (PDF) A new approach to upscaling fracture network models while ...:https://www./publication/278031692_A_new_approach_to_upscaling_fracture_network_models_while_preserving_geostatistical_and_geomechanical_characteristics
[74] An Integrated Discrete Fracture Model for Description of Dynamic Behavior in Fractured Reservoirs: https://scits./sites/g/files/sbiybj22081/files/media/file/norbeck_2014_0.pdf
|