生態學的發展 生態學是研究生物之間及生物與非生物、環境之間相互關系的學科,是德國生物學家恩斯特·海克爾于1869年定義的一個概念:生態學是研究生物體與其周圍環境(包括非生物環境和生物環境)相互關系的科學。目前已經發展為“研究生物與其環境之間的相互關系的科學”。有自己的研究對象、任務和方法的比較完整和獨立的學科。它們的研究方法經過描述—實驗—物質定量三個過程。系統論、控制論、信息論的概念和方法的引入,促進了生態學理論的發展。 生物的生存、活動、繁殖需要一定的空間、物質與能量。生物在長期進化過程中,逐漸形成對周圍環境某些物理條件和化學成分的特殊需要,諸如空氣、光照、水分、熱量和無機鹽類等。各種生物所需要的物質、能量以及它們所適應的理化條件是不同的,這種特性稱為物種的生態特性。 任何生物的生存都不是孤立的:同種個體之間有互助有競爭;植物、動物、微生物之間也存在復雜的相生相克關系。人類為滿足自身的需要,不斷改造環境,環境反過來又影響人類。 隨著人類活動范圍的擴大與多樣化,人類與環境的關系問題越來越突出。因此近代生態學研究的范圍,除生物個體、種群和生物群落外,已擴大到包括人類社會在內的多種類型生態系統的復合系統。人類面臨的人口、資源、環境等幾大問題都是生態學的研究內容。 近年來,生態學已經創立了自己獨立研究的理論主體,即從生物個體與環境直接影響的小環境到生態系統不同層級的有機體與環境關系的理論。它們的研究方法經過描述——實驗——物質定量三個過程。系統論、控制論、信息論的概念和方法的引入,促進了生態學理論的發展。如今,由于與人類生存與發展的緊密相關而產生了多個生態學的研究熱點,如生物多樣性的研究、全球氣候變化的研究、受損生態系統的恢復與重建研究、可持續發展研究等。 20世紀50年代以來,生態學吸收了數學、物理、化學工程技術科學的研究成果,向精確定量方向前進并形成了自己的理論體系: 數理化方法、精密靈敏的儀器和電了計算機的應用,使生態學工作者有可能更廣泛、深入地探索生物與環境之間相互作用的物質基礎,對復雜的生態現象進行定量分析;整體概念的發展,產生出系統生態學等若干新分支,初步建立了生態學理論體系。 由于世界上的生態系統大都受人類活動的影響,社會經濟生產系統與生態系統相互交織,實際形成了龐大的復合系統。隨著社會經濟和現代工業化的高速度發展,自然資源、人口、糧食和環境等一系列影響社會生產和生活的問題日益突出。 為了尋找解決這些問題的科學依據和有效措施,國際生物科學聯合會(IUBS)制定了“國際生物計劃”(IBP),對陸地和水域生物群系進行生態學研究。1972年聯合國教科文組織等繼IBP之后,設立了人與生物圈(MAB)國際組織,制定“人與生物圈”規劃,組織各參加國開展森林、草原。海洋、湖泊等生態系統與人類活動關系以及農業、城市、污染等有關的科學研究。許多國家都設立了生態學和環境科學的研究機構。 發展趨勢和許多自然科學一樣,生態學的發展趨勢是:由定性研究趨向定量研究,由靜態描述趨向動態分析;逐漸向多層次的綜合研究發展;與其他某些學科的交叉研究日益顯著。 由人類活動對環境的影響來看,生態學是自然科學與社會科學的交匯點;在方法學方面,研究環境因素的作用機制高不開生理學方法,離不開物理學和化學技術,而且群體調查和系統分析更高不開數學的方法和技術;在理論方面,生態系統的代謝和自穩態等概念基本是引自生理學,而由物質流、能量流和信息流的角度來研究生物與環境的相互作用則可說是由物理學、化學、生理學、生態學和社會經濟學等共同發展出的研究體系。 生態學的一般規律: 生態學第一定律:我們的任何行動都不是孤立的,對自然界的任何侵犯都具有無數的效應,其中許多是不可預料的。這一定律是G.哈定(G.Hardin)提出的,可稱為多效應原理。 生態學第二定律:每一事物無不與其他事物相互聯系和相互交融。此定律又稱相互聯系原理。 生態學第三定律:我們所生產的任何物質均不應對地球上自然的生物地球化學循環有任何干擾。此定律可稱為勿干擾原理。 |
|