【引用格式】姚莉,田沃土,曹立. 遺傳性痙攣性截癱診斷策略[J]. 中國(guó)神經(jīng)精神疾病雜志,2023,49(2):112-119. 【Cite this article】YAO L,TIAN W,CAO L. Diagnostic strategies for hereditary spastic paraplegia[J]. Chin J Nervous Mental Dis,2023,49(2):112-119. DOI:10.3969/j.issn.1002-0152.2023.02.008 遺傳性痙攣性截癱診斷策略☆上海交通大學(xué)醫(yī)學(xué)院附屬第六人民醫(yī)院神經(jīng)內(nèi)科 安徽醫(yī)科大學(xué)附屬宿州醫(yī)院神經(jīng)內(nèi)科 摘 要 遺傳性痙攣性截癱(hereditary spastic paraplegia,HSP)是一組具有高度臨床和遺傳異質(zhì)性的神經(jīng)退行性疾病,以下肢進(jìn)行性痙攣為最主要的臨床特點(diǎn)。在臨床實(shí)踐中,如何對(duì)該疾病進(jìn)行診斷和鑒別診斷,進(jìn)一步在種類(lèi)繁多的致病基因中進(jìn)行HSP分型診斷,具有一定挑戰(zhàn)性。隨著基因檢測(cè)技術(shù)不斷發(fā)展,一方面諸多新致病基因得到克隆或重新定位,另一方面如何合理利用遺傳分析輔助鑒別診斷和分型診斷,需進(jìn)一步規(guī)范基因檢測(cè)技術(shù)的應(yīng)用策略。本文對(duì)HSP的臨床特點(diǎn)、基因分型、診斷與鑒別診斷等進(jìn)行綜述。關(guān)鍵詞 遺傳性痙攣性截癱;臨床表型;基因型;分子診斷遺傳性痙攣性截癱(hereditary spastic paraplegia,HSP,或稱(chēng)SPG)是一組具有高度臨床和遺傳異質(zhì)性的單基因遺傳性神經(jīng)系統(tǒng)退行性疾病,以皮質(zhì)脊髓束長(zhǎng)度依賴(lài)性軸突變性為主要病理特征,表現(xiàn)為雙側(cè)皮質(zhì)脊髓束的軸索變性和(或)脫髓鞘改變,且以胸段病變最為顯著[1-2]。1880年Strümpell報(bào)道了首例HSP病例,而后Lorrain對(duì)該病的臨床特點(diǎn)進(jìn)行了更詳細(xì)的描述,因此該病又稱(chēng)為Strümpell-Lorrain病[3-5]。HSP的臨床診斷主要依據(jù):進(jìn)行性雙下肢痙攣無(wú)力的核心臨床表現(xiàn);有陽(yáng)性家族史(陰性不能排除);雙下肢錐體束征,包括雙下肢腱反射亢進(jìn)、踝陣攣和髕陣攣陽(yáng)性、巴賓斯基征陽(yáng)性;排除其他疾病[6]。HSP有多種分類(lèi)方式。①根據(jù)臨床特點(diǎn),可將HSP的表型初步歸為單純型和復(fù)雜型兩大類(lèi):“單純型”僅有運(yùn)動(dòng)功能障礙,以雙下肢進(jìn)行性痙攣無(wú)力、僵硬、步態(tài)異常為核心特點(diǎn),還可能存在尿便障礙、深感覺(jué)障礙和弓形足等;“復(fù)雜型”不僅具有上述特點(diǎn),還可疊加其他神經(jīng)系統(tǒng)或非神經(jīng)系統(tǒng)異常癥狀,包括智力發(fā)育遲滯、構(gòu)音障礙、吞咽障礙、癲癇發(fā)作、共濟(jì)失調(diào)、周?chē)窠?jīng)病變、震顫、聽(tīng)覺(jué)障礙、白內(nèi)障、視神經(jīng)萎縮、色素性視網(wǎng)膜病變、皮膚病、胼胝體萎縮、腦白質(zhì)病變和小腦萎縮等[7-8]。②根據(jù)發(fā)病年齡,可分為早發(fā)型(<35歲,Ⅰ型)和晚發(fā)型(≥35歲,Ⅱ型)[1]。③根據(jù)遺傳方式,可分為常染色體顯性遺傳(autosomal dominant,AD)、常染色體隱性遺傳(autosomal recessive,AR)、X連鎖遺傳(X-linked inheritance,XL)和線(xiàn)粒體遺傳,此外,散發(fā)性病例約占總體的13%~40%[9]。HSP亞型是根據(jù)發(fā)現(xiàn)的先后順序依次編號(hào)命名的。不同亞型之間在發(fā)病年齡、病程進(jìn)展、致殘程度以及是否合并其他功能障礙等方面存在異質(zhì)性[10]。某些亞型由于具有相似的發(fā)病機(jī)制,可能具有相似的表型特點(diǎn)[11]。除HSP以外,還有其他神經(jīng)系統(tǒng)疾病也具有下肢肌張力增高、步態(tài)異常等特點(diǎn),需與HSP鑒別診斷。隨著基因檢測(cè)技術(shù)的不斷發(fā)展和廣泛應(yīng)用,越來(lái)越多HSP患者得到明確的分型診斷,某些極罕見(jiàn)亞型獲得了更多的報(bào)道。諸多新致病基因被克隆或重新定位,也為疾病的診斷、治療和機(jī)制研究提供了更多線(xiàn)索。即便如此,仍然有30%~50%的HSP患者尚未得到明確的分子診斷[12]。因此,如何合理利用遺傳分析方法輔助鑒別診斷和分型診斷,需進(jìn)一步規(guī)范基因檢測(cè)技術(shù)的應(yīng)用策略。本文對(duì)HSP的臨床特點(diǎn)、基因分型、診斷與鑒別診斷等進(jìn)行綜述。HSP多起病隱匿,以進(jìn)行性加重的雙下肢痙攣無(wú)力、步態(tài)異常為核心臨床特點(diǎn),可起病于嬰兒期、兒童期、青春期和成年期等不同年齡段,患病率為0.1/10萬(wàn)~9.6/10萬(wàn)[13]。兒童早期起病者,可表現(xiàn)為運(yùn)動(dòng)里程碑發(fā)育遲滯,因而易誤診為腦癱[9]。由于常存在下肢肌肉痙攣、肌力減退、肌張力高、關(guān)節(jié)攣縮或足畸形等,大部分病程中-后期的患者可能需要借助于矯形器、拐杖、輪椅等工具行動(dòng)[14]。通過(guò)生存分析模型(Kaplan-Meier analysis)預(yù)測(cè),分別處于病程第10年、20年、30年和40年的患者在日常生活中依賴(lài)輪椅的占比分別為5%、12%、18%和29%[15]。最終,約13%的患者可能完全喪失行動(dòng)能力而常年臥床[14]。單純型HSP患者壽命多不受影響,但HSP總體致殘性極高[1]。AD-HSP多表現(xiàn)為單純型,而AR-HSP以復(fù)雜型為主。此外,不少亞型兼有單純型和復(fù)雜型特征,如SPG2/3A/4/5/6/7/10/16/18/27/30/31/35/45/48/76/77/80等型。SPG3A是最常見(jiàn)的兒童期起病的HSP亞型,SPG4和SPG7以晚發(fā)型為主[12],而SPG19/25/27/33幾乎均為成年期起病。部分復(fù)雜型HSP可表現(xiàn)為獨(dú)特的臨床綜合征,如SPG1的典型特征可總結(jié)為“CRASH”——胼胝體發(fā)育不良(callosal agenesis)、精神發(fā)育遲滯(mental retardation)、拇指內(nèi)收(adducted thumbs)、痙攣性截癱(spastic paraplegia)和腦積水(hydrocephalus)[16];SPG17和SPG20則以HSP伴顯著遠(yuǎn)端肌萎縮為特點(diǎn),分別稱(chēng)為Silver綜合征和Troyer綜合征[5, 10];SPG21又稱(chēng)Mast綜合征(HSP伴早老性癡呆),多于疾病后期出現(xiàn)明顯認(rèn)知功能障礙[17];SPG22表現(xiàn)為Allan-Herndon-Dudley綜合征(HSP伴甲狀腺功能異常),即精神運(yùn)動(dòng)發(fā)育遲滯、構(gòu)音障礙、手足徐動(dòng)癥、癲癇發(fā)作以及共濟(jì)失調(diào)等,嚴(yán)重者無(wú)發(fā)音及行走能力[5, 18]。在影像學(xué)上,薄胼胝體是AR-HSP常見(jiàn)的特征之一,以胼胝體壓部最為顯著,常見(jiàn)于SPG9/11/15/21/32/35等[2]。SPG11和SPG15常見(jiàn)“山貓耳”征,即T2和FLAIR上側(cè)腦室前角白質(zhì)(小鉗區(qū))高信號(hào),如“山貓耳尖”的一簇毛發(fā)[19];腦白質(zhì)病變常見(jiàn)于SPG5/7/11/15/20/35等,其中50%的復(fù)雜型SPG5病例可見(jiàn)非特異性白質(zhì)改變[20];小腦萎縮常見(jiàn)于SPG7/15/35/39/49等,其中39%~95%的SPG7患者可見(jiàn)小腦萎縮,以小腦蚓部為主[21-22];鐵沉積可見(jiàn)于SPG35和SPG50,主要累及基底節(jié)區(qū)[23];脊髓萎縮常見(jiàn)于SPG4/5/11/39等,且SPG4脊髓灰質(zhì)萎縮程度與病程呈正相關(guān)[24]。目前已定位103個(gè)與HSP相關(guān)的遺傳學(xué)位點(diǎn),已明確的致病基因共計(jì)90個(gè)。其中AD-HSP包括19種亞型(表1),AR-HSP包括57種亞型(表2),兼有AD和AR兩種遺傳方式者包括5種亞型(表3),XL-HSP包括5種亞型(表4),線(xiàn)粒體遺傳及其他尚未分型者共有17種亞型(表5)。表1 常染色體顯性遺傳的HSP亞型注:數(shù)據(jù)更新截止于2022年9月6日。HSP/SPG,遺傳性痙攣性截癱;OMIM,在線(xiàn)人類(lèi)孟德?tīng)栠z傳數(shù)據(jù)庫(kù);C,復(fù)雜型;P,單純型。-,暫未明確;*,見(jiàn)于個(gè)別病例;AD,常染色體顯性遺傳。 表2 常染色體隱性遺傳的HSP亞型注:數(shù)據(jù)更新截止于2022年9月6日。HSP/SPG,遺傳性痙攣性截癱;OMIM,在線(xiàn)人類(lèi)孟德?tīng)栠z傳數(shù)據(jù)庫(kù);C,復(fù)雜型;P,單純型;-,暫未明確;*,見(jiàn)于個(gè)別病例;AR,常染色體隱性遺傳。 表3 遺傳方式AD、AR均有的HSP亞型注:數(shù)據(jù)更新截止于2022年9月6日。AD,常染色體顯性遺傳;AR,常染色體隱形遺傳;HSP/SPG,遺傳性痙攣性截癱;C,復(fù)雜型;P,單純型;OMIM,在線(xiàn)人類(lèi)孟德?tīng)栠z傳數(shù)據(jù)庫(kù);-,暫未明確;*,見(jiàn)于個(gè)別病例。 表4 X連鎖遺傳的HSP 亞型注:數(shù)據(jù)更新截止于2022年9月6日。HSP/SPG,遺傳性痙攣性截癱;XLR,X連鎖隱性遺傳;XLSD,X連鎖不完全顯性遺傳;C,復(fù)雜型;P,單純型;OMIM,在線(xiàn)人類(lèi)孟德?tīng)栠z傳數(shù)據(jù)庫(kù);*,見(jiàn)于個(gè)別病例;-,暫未明確。 表5 線(xiàn)粒體遺傳及未分型的HSP亞型注:數(shù)據(jù)更新截止于2022年9月6日。HSP/SPG,遺傳性痙攣性截癱;AD,常染色體顯性遺傳;AR,常染色體隱形遺傳;Mt,線(xiàn)粒體;MtDNA,線(xiàn)粒體DNA;C,復(fù)雜型;P,單純型;OMIM,在線(xiàn)人類(lèi)孟德?tīng)栠z傳數(shù)據(jù)庫(kù);-,暫未明確。 2.1 常染色體顯性遺傳的HSP(AD-HSP) AD-HSP患病率為0.5/10萬(wàn)~5.5/10萬(wàn)[25],最常見(jiàn)的亞型依次為SPG4、SPG3A、SPG31和SPG10。其中,SPG4的不完全外顯率約為5%~10%,因此散發(fā)者并不少見(jiàn),該型發(fā)病年齡呈雙峰分布,即10歲之前和30~50歲發(fā)病最為常見(jiàn)[26]。部分患者伴有智能障礙、癲癇發(fā)作以及共濟(jì)失調(diào)等癥狀。SPG3A是兒童期起病的HSP中最常見(jiàn)類(lèi)型[27]。SPG31起病年齡也類(lèi)似于SPG4呈現(xiàn)雙峰分布的特點(diǎn),少數(shù)患者合并有遠(yuǎn)端肌萎縮、小腦性共濟(jì)失調(diào)以及癡呆等癥狀[28]。SPG10最初被認(rèn)為是嬰兒期發(fā)病的單純型HSP,亦有成年期起病者[29],部分病例可以合并周?chē)窠?jīng)病變、帕金森樣癥狀、Silver綜合征以及小腦性共濟(jì)失調(diào)等[30]。2.2 常染色體隱形遺傳的HSP(AR-HSP) AR-HSP患病率為0.3/10萬(wàn)~5.3/10萬(wàn),不同人群的發(fā)病率差異顯著[25]。歐洲人群最常見(jiàn)的三種亞型依次為SPG11、SPG15和SPG5[25],中國(guó)人群以SPG11、SPG35和SPG5最為常見(jiàn)[20, 31]。SPG11和SPG15是合并薄胼胝體HSP(hereditary spastic paraplegia with thin corpus callosum,HSP-TCC)的常見(jiàn)亞型[32]。部分SPG11患者早期就可以出現(xiàn)廣泛的認(rèn)知功能障礙,可能早于運(yùn)動(dòng)癥狀出現(xiàn)[33],其他常見(jiàn)合并癥狀包括構(gòu)音障礙、共濟(jì)失調(diào)、視神經(jīng)萎縮、帕金森樣癥狀以及癲癇發(fā)作[32, 34]。SPG15可合并色素性黃斑病變,又稱(chēng)Kjellin綜合征,此外還可能出現(xiàn)認(rèn)知功能障礙、震顫麻痹、小腦體征和拇指內(nèi)收等表現(xiàn)[5, 35]。視力受累的其他亞型包括SPG5/7/11/35等[2]。SPG35患者中構(gòu)音障礙和智能障礙發(fā)生率相對(duì)較高[36]。復(fù)雜型SPG5多合并共濟(jì)失調(diào)和視神經(jīng)萎縮[37]。2.3 兼有AD-AR遺傳的HSP亞型 兼有AD和AR兩種遺傳方式的HSP亞型包括SPG3A/7/9/30/72。絕大多數(shù)SPG7患者為晚發(fā)型,表型異質(zhì)性較大,即使在相同家系內(nèi)的不同患者之間,臨床表現(xiàn)也可能不盡相同;共濟(jì)失調(diào)在此型較為突出,還可合并構(gòu)音障礙、周?chē)窠?jīng)病變和嚴(yán)重的智能障礙等[38]。HSP臨床診斷主要依據(jù)患者的臨床表現(xiàn)(雙下肢痙攣、無(wú)力和步態(tài)異常),以及起病年齡、起病方式、既往病史、家族史等,神經(jīng)系統(tǒng)體格檢查多提示雙下肢腱反射亢進(jìn)、踝陣攣和髕陣攣陽(yáng)性、巴賓斯基征陽(yáng)性。進(jìn)一步需排除繼發(fā)因素所致慢性脊髓病變,如多發(fā)性硬化、脊髓空洞癥、脊髓壓迫癥(脊髓型頸椎病、寰樞椎半脫位、脊柱畸形、星形細(xì)胞瘤、室管膜瘤、脊柱腫瘤)、脊髓外傷、脊髓缺血性血管病(纖維軟骨栓塞、硬腦膜動(dòng)靜脈畸形等)、中樞神經(jīng)系統(tǒng)感染(人類(lèi)嗜T淋巴細(xì)胞病毒-1感染、HIV感染、梅毒等)、微量元素或營(yíng)養(yǎng)素缺乏(銅、維生素B12等)、輻射性脊髓病、中毒(鉛、山黧豆)等(圖1)。還應(yīng)注意其他遺傳性疾病也可能表現(xiàn)為相似的臨床表型,如腦白質(zhì)營(yíng)養(yǎng)不良、脊髓小腦性共濟(jì)失調(diào)、肌萎縮側(cè)索硬化癥、成人葡聚糖體疾病、精氨酸血癥、多巴反應(yīng)性肌張力障礙以及生物素酶缺乏癥等[9]。圖1 HSP診斷流程圖 HSP/SPG,遺傳性痙攣性截癱;AD,常染色體顯性遺傳;AR,常染色體隱性遺傳;Mt,線(xiàn)粒體;XL,X連鎖遺傳;APBD,成人葡萄糖多聚體??;DRD,多巴反應(yīng)性肌張力障礙;BTDD,生物素酶缺乏癥;PKU,苯丙酮尿癥;GLUT1-DS,葡萄糖轉(zhuǎn)運(yùn)子1缺乏綜合征;MTHFR,亞甲基四氫葉酸還原酶缺乏癥;Krabbe病,克拉伯?。籄LD,腎上腺腦白質(zhì)營(yíng)養(yǎng)不良;MLD,異染性腦白質(zhì)營(yíng)養(yǎng)不良;CTX,腦腱黃瘤病;ALX,亞歷山大?。籔MD,佩梅?。籔MLD,佩梅樣??;ADLD,常染色體顯性遺傳成人型腦白質(zhì)營(yíng)養(yǎng)不良;SCA,脊髓小腦性共濟(jì)失調(diào);FRDA,弗里德賴(lài)希共濟(jì)失調(diào);SPAX,遺傳性痙攣性共濟(jì)失調(diào);ARSACS,Charlevoix-Saguenay常染色體隱性痙攣性共濟(jì)失調(diào);ALS,肌萎縮側(cè)索硬化;NBIA,腦組織鐵沉積性神經(jīng)變性疾??;FAD,家族性阿爾茨海默病;PLS,原發(fā)性側(cè)索硬化。由于HSP與多種遺傳性疾病具有表型和基因型的重疊,加上該病的亞型眾多,分型診斷需進(jìn)行基因檢測(cè)。二代測(cè)序(next generation sequencing,NGS)是目前臨床應(yīng)用最廣泛的基因檢測(cè)技術(shù),包括靶向測(cè)序(targeted sequencing,TS)、全外顯子測(cè)序(whole exome sequencing,WES)和全基因組測(cè)序(whole genome sequencing,WGS)。靶向測(cè)序(如HSP-panel)通過(guò)探針雜交技術(shù),將基因組特定區(qū)域抓取下來(lái)進(jìn)行測(cè)序,覆蓋靶向多種已知基因,相對(duì)節(jié)省測(cè)序成本,但不能提示panel以外其他基因突變的情況。WES可以對(duì)人類(lèi)核基因組約兩萬(wàn)個(gè)已知基因的外顯子及側(cè)翼序列進(jìn)行捕獲富集和分析,由于WES所需樣本量和成本低于WGS,而分析覆蓋范圍遠(yuǎn)高于panel,因而近年來(lái)得到廣泛的應(yīng)用。一代測(cè)序(Sanger)多用于指定基因檢測(cè)或已知位點(diǎn)的測(cè)序驗(yàn)證,通常用于NGS回報(bào)陽(yáng)性結(jié)果后的家系共分離驗(yàn)證步驟。值得注意的是,NGS的局限性在于對(duì)大片段基因突變的檢出率較低,如染色體結(jié)構(gòu)變異、拷貝數(shù)變異(copy number variation,CNV),進(jìn)一步可應(yīng)用針對(duì)性的比較基因組雜交(array-based comparative genomic hybridization, aCGH)、單核苷酸多態(tài)性微陣列分析(SNP array)或多重連接探針擴(kuò)增法(multiplex ligation-dependent probe amplification,MLPA)分析。已有研究報(bào)道,SPG3A/4/11/31等亞型可由相應(yīng)基因的大片段缺失或重復(fù)導(dǎo)致疾病[28, 39],因此,臨床實(shí)踐中常見(jiàn)將MLPA與WES技術(shù)相結(jié)合使用、互為補(bǔ)充的情況。此外,DNA序列中某些特定三核苷酸串聯(lián)重復(fù)拷貝數(shù)增加,即動(dòng)態(tài)突變,可通過(guò)southern blot雜交、重復(fù)引物PCR技術(shù)、毛細(xì)管電泳等方法進(jìn)行檢測(cè)。對(duì)于上述方法結(jié)果均陰性的案例,可進(jìn)一步考慮WGS或三代測(cè)序(即納米孔測(cè)序,nanopore sequencing)等技術(shù),用于探索部分內(nèi)含子深處或未知基因的多核苷酸動(dòng)態(tài)突變等情況。三代測(cè)序又稱(chēng)長(zhǎng)讀長(zhǎng)測(cè)序,因其讀長(zhǎng)可達(dá)2~10 kb,對(duì)于動(dòng)態(tài)突變檢測(cè)有利,但由于成本較高以及分析儲(chǔ)存數(shù)據(jù)難度較大,目前仍處于技術(shù)發(fā)展期。綜上所述,HSP具有高度的遺傳及臨床異質(zhì)性,基因檢測(cè)是該病分型診斷的金標(biāo)準(zhǔn),了解HSP的基因型-表型相關(guān)性有助于指導(dǎo)選擇合適的基因檢測(cè)手段。雖然各亞型HSP致病機(jī)制的研究深入程度不一,但越來(lái)越多的新致病基因被克隆或重新定位,這將為HSP新致病基因的發(fā)現(xiàn)、基因治療和靶向藥物的開(kāi)發(fā)提供新視野。 1. MEYYAZHAGAN A, ORLACCHIO A. Hereditary Spastic Paraplegia: An Update[J]. Int J Mol Sci, 2022, 23(3): 35-39.
2. DE SOUZA P V S, DE REZENDE PINTO W B V, DE REZENDE BATISTELLA G N, et al. Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks[J]. Cerebellum, 2017, 16(2): 525-551.
3. ENGMANN B, WAGNER A, STEINBERG H. Adolf von Strümpell: a key yet neglected protagonist of neurology[J]. J Neurol, 2012, 259(10): 2211-2220.
4. FABER I, PEREIRA E R, MARTINEZ A R M, et al. Hereditary spastic paraplegia from 1880 to 2017: an historical review[J]. Arq Neuropsiquiatr, 2017, 75(11): 813-818.
5. 劉蕊, 胡曉, 李玫, 等. 特殊類(lèi)型遺傳性痙攣性截癱的研究進(jìn)展[J]. 中華神經(jīng)科雜志, 2016, 49(8): 659-663.
6. FINK J K. Advances in hereditary spastic paraplegia[J]. Curr Opin Neurol, 1997, 10(4): 313-318.
7. BOUTRY M, MORAIS S, STEVANIN G. Update on the Genetics of Spastic Paraplegias[J]. Curr Neurol Neurosci Rep, 2019, 19(4): 18.
8. HARDING A E. Classification of the hereditary ataxias and paraplegias[J]. Lancet, 1983, 1(8334): 1151-1155.
9. SHRIBMAN S, REID E, CROSBY A H, et al. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches[J]. Lancet Neurol, 2019, 18(12): 1136-1146.
10. FINK J K. Hereditary spastic paraplegia[J]. Curr Neurol Neurosci Rep, 2006, 6(1): 65-76.
11. SAPUTRA L, KUMAR K R. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia[J]. Curr Neurol Neurosci Rep, 2021, 21(4): 15.
12. BLACKSTONE C. Early-onset hereditary spastic paraplegia: the possibility of a genetic diagnosis[J]. Dev Med Child Neurol, 2020, 62(9): 1011.
13. FINK J K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms[J]. Acta Neuropathologica, 2013, 126(3): 307-328.
14. VAN LITH B J H, KERSTENS H, VAN DEN BEMD L A C, et al. Experienced complaints, activity limitations and loss of motor capacities in patients with pure hereditary spastic paraplegia: a web-based survey in the Netherlands[J]. Orphanet J Rare Dis, 2020, 15(1): 64.
15. SCHüLE R, WIETHOFF S, MARTUS P, et al. Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients[J]. Ann Neurol, 2016, 79(4): 646-658.
16. LINNEBERG C, TOFT C L F, KJAER-SORENSEN K, et al. L1cam-mediated developmental processes of the nervous system are differentially regulated by proteolytic processing[J]. Sci Rep, 2019, 9(1): 3716.
17. SIMPSON M A, CROSS H, PROUKAKIS C, et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia[J]. Am J Hum Genet, 2003, 73(5): 1147-1156.
18. MARANDUBA C M, FRIESEMA E C, KOK F, et al. Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter[J]. J Med Genet, 2006, 43(5): 457-460.
19. PASCUAL B, DE BOT S T, DANIELS M R, et al. 'Ears of the Lynx' MRI Sign Is Associated with SPG11 and SPG15 Hereditary Spastic Paraplegia[J]. AJNR Am J Neuroradiol, 2019, 40(1): 199-203.
20. DONG E L, WANG C, WU S, et al. Clinical spectrum and genetic landscape for hereditary spastic paraplegias in China[J]. Mol Neurodegener, 2018, 13(1): 36.
21. HEWAMADDUMA C A, HOGGARD N, MALLEY R, et al. Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations[J]. Neurol Genet, 2018, 4(6): 279-281.
22. PFEFFER G. SPG7 mutations are a common cause of undiagnosed ataxia[J]. Neurology, 2015, 84(18): 1911.
23. ROUBERTIE A, HIEU N, ROUX C J, et al. AP4 deficiency: A novel form of neurodegeneration with brain iron accumulation?[J]. Neurol Genet, 2018, 4(1): 217-220.
24. SERVELHERE K R, CASSEB R F, DE LIMA F D, et al. Spinal Cord Gray and White Matter Damage in Different Hereditary Spastic Paraplegia Subtypes[J]. AJNR Am J Neuroradiol, 2021, 42(3): 610-615.
25. RUANO L, MELO C, SILVA M C , et al. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies[J]. Neuroepidemiology, 2014, 42(3): 174-183.
26. PARODI L, FENU S, BARBIER M, et al. Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex[J]. Brain, 2018, 141(12): 3331-3342.
27. KHAN T N, KLAR J, TARIQ M, et al. Evidence for autosomal recessive inheritance in SPG3A caused by homozygosity for a novel ATL1 missense mutation[J]. Eur J Hum Genet, 2014, 22(10): 1180-1184.
28. BEETZ C, SCHüLE R, DECONINCK T, et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31[J]. Brain, 2008, 131(Pt 4): 1078-1086.
29. BLAIR M A, MA S, HEDERA P. Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia[J]. Neurogenetics, 2006, 7(1): 47-50.
30. QIU Y, ZHONG S, CONG L, et al. A novel KIF5A gene variant causes spastic paraplegia and cerebellar ataxia[J]. Ann Clin Transl Neurol, 2018, 5(11): 1415-1420.
31. LIAO X, LUO Y, ZHAN Z, et al. SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations[J]. Clin Genet, 2015, 87(1): 85-89.
32. KARA E, TUCCI A, MANZONI C, et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia[J]. Brain, 2016, 139(Pt 7): 1904-1918.
33. LI C, YAN Q, DUAN F J, et al. Mild cognitive impairment in novel SPG11 mutation-related sporadic hereditary spastic paraplegia with thin corpus callosum: case series[J]. BMC Neurol, 2021, 21(1): 12.
34. PENSATO V, CASTELLOTTI B, GELLERA C, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48[J]. Brain, 2014, 137(Pt 7): 1907-1920.
35. WEBB S, PATTERSON V, HUTCHINSON M. Two families with autosomal recessive spastic paraplegia, pigmented maculopathy, and dementia[J]. J Neurol Neurosurg Psychiatry, 1997, 63(5): 628-632.
36. RATTAY T W, LINDIG T, BAETS J, et al. FAHN/SPG35: a narrow phenotypic spectrum across disease classifications[J]. Brain, 2019, 142(6): 1561-1572.
37. ARNOLDI A, CRIMELLA C, TENDERINI E, et al. Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations[J]. Clin Genet, 2012, 81(2): 150-157.
38. VAN GASSEN K L, VAN DER HEIJDEN C D, DE BOT S T, et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort[J]. Brain, 2012, 135(Pt 10): 2994-3004.
39. CONCEI??O PEREIRA M, LOUREIRO J L, PINTO-BASTO J, et al. Alu elements mediate large SPG11 gene rearrangements: further spatacsin mutations[J]. Genet Med, 2012, 14(1): 143-151.
Diagnostic strategies for hereditary spastic paraplegiaShanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Abstract: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive spasticity of the lower limbs. However, differential diagnosis and molecular classification of HSP face big challenges in clinical practice. As genetic test technology develops, several novel pathogenic genes have been cloned or relocated recently. Thus, to assist the accurate diagnosis and genetic diagnosis, it requires further standardization of the application of genetic testing and overall diagnostic process. In this review, we aim to review the clinical and genotypic features, diagnosis, and differential diagnosis of HSP.Keywords: Hereditary spastic paraplegia;Phenotype;Genotype;Molecular diagnosis
|